Do you want to publish a course? Click here

On the probabilistic approach to the N-body problem

63   0   0.0 ( 0 )
 Added by Mario Romero
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work discusses the main analogies and differences between the deterministic approach underlying most cosmological N-body simulations and the probabilistic interpretation of the problem that is often considered in mathematics and statistical mechanics. In practice, we advocate for averaging over an ensemble of $S$ independent simulations with $N$ particles each in order to study the evolution of the one-point probability density $Psi$ of finding a particle at a given location of phase space $(mathbf{x},mathbf{v})$ at time $t$. The proposed approach is extremely efficient from a computational point of view, with modest CPU and memory requirements, and it provides an alternative to traditional N-body simulations when the goal is to study the average properties of N-body systems, at the cost of abandoning the notion of well-defined trajectories for each individual particle. In one spatial dimension, our results, fully consistent with those previously reported in the literature for the standard deterministic formulation of the problem, highlight the differences between the evolution of the one-point probability density $Psi(x,v,t)$ and the predictions of the collisionless Boltzmann (Vlasov-Poisson) equation, as well as the relatively subtle dependence on the actual finite number $N$ of particles in the system. We argue that understanding this dependence with $N$ may actually shed more light on the dynamics of real astrophysical systems than the limit $Ntoinfty$.



rate research

Read More

As an entry for the 2012 Gordon-Bell performance prize, we report performance results of astrophysical N-body simulations of one trillion particles performed on the full system of K computer. This is the first gravitational trillion-body simulation in the world. We describe the scientific motivation, the numerical algorithm, the parallelization strategy, and the performance analysis. Unlike many previous Gordon-Bell prize winners that used the tree algorithm for astrophysical N-body simulations, we used the hybrid TreePM method, for similar level of accuracy in which the short-range force is calculated by the tree algorithm, and the long-range force is solved by the particle-mesh algorithm. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. The average performance on 24576 and 82944 nodes of K computer are 1.53 and 4.45 Pflops, which correspond to 49% and 42% of the peak speed.
105 - A.A. Lykov , V.A. Malyshev 2016
This paper contains a rigorous mathematical example of direct derivation of the system of Euler hydrodynamic equations from Hamiltonian equations for N point particle system as N tends to infinity. Direct means that the following standard tools are not used in the proof: stochastic dynamics, thermodynamics, Boltzmann kinetic equations, correlation functions approach by N. N. Bogolyubov.
We present a new symplectic integrator designed for collisional gravitational $N$-body problems which makes use of Kepler solvers. The integrator is also reversible and conserves 9 integrals of motion of the $N$-body problem to machine precision. The integrator is second order, but the order can easily be increased by the method of citeauthor{yos90}. We use fixed time step in all tests studied in this paper to ensure preservation of symplecticity. We study small $N$ collisional problems and perform comparisons with typically used integrators. In particular, we find comparable or better performance when compared to the 4th order Hermite method and much better performance than adaptive time step symplectic integrators introduced previously. We find better performance compared to SAKURA, a non-symplectic, non-time-reversible integrator based on a different two-body decomposition of the $N$-body problem. The integrator is a promising tool in collisional gravitational dynamics.
We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrodinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory, Configuration-Interaction Monte Carlo, and the Self-Consistent Greens Function approach. The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.
The general consensus in the N-body community is that statistical results of an ensemble of collisional N-body simulations are accurate, even though individual simulations are not. A way to test this hypothesis is to make a direct comparison of an ensemble of solutions obtained by conventional methods with an ensemble of true solutions. In order to make this possible, we wrote an N-body code called Brutus, that uses arbitrary-precision arithmetic. In combination with the Bulirsch--Stoer method, Brutus is able to obtain converged solutions, which are true up to a specified number of digits. We perform simulations of democratic 3-body systems, where after a sequence of resonances and ejections, a final configuration is reached consisting of a permanent binary and an escaping star. We do this with conventional double-precision methods, and with Brutus; both have the same set of initial conditions and initial realisations. The ensemble of solutions from the conventional simulations is compared directly to that of the converged simulations, both as an ensemble and on an individual basis to determine the distribution of the errors. We find that on average at least half of the conventional simulations diverge from the converged solution, such that the two solutions are microscopically incomparable. For the solutions which have not diverged significantly, we observe that if the integrator has a bias in energy and angular momentum, this propagates to a bias in the statistical properties of the binaries. In the case when the conventional solution has diverged onto an entirely different trajectory in phase-space, we find that the errors are centred around zero and symmetric; the error due to divergence is unbiased, as long as the time-step parameter, eta <= 2^(-5) and when simulations which violate energy conservation by more than 10% are excluded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا