Do you want to publish a course? Click here

Robustness of spatial patterns in buffered reaction-diffusion systems and its reciprocity with phase plasticity

137   0   0.0 ( 0 )
 Publication date 2017
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

Robustness of spatial pattern against perturbations is an indispensable property of developmental processes for organisms, which need to adapt to changing environments. Although specific mechanisms for this robustness have been extensively investigated, little is known about a general mechanism for achieving robustness in reaction-diffusion systems. Here, we propose a buffered reaction-diffusion system, in which active states of chemicals mediated by buffer molecules contribute to reactions, and demonstrate that robustness of the pattern wavelength is achieved by the dynamics of the buffer molecule. This robustness is analytically explained as a result of the scaling properties of the buffered system, which also lead to a reciprocal relationship between the wavelengths robustness and the plasticity of the spatial phase upon external perturbations. Finally, we explore the relevance of this reciprocity to biological systems.



rate research

Read More

Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of `open reaction-diffusion systems often neglect the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization, and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions, and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain, and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions, and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.
Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of the role of the cytoplasmic $beta$-catenin and $alpha$-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell contact, the concentration in $alpha$-catenin dimers increases, inhibiting actin branching and thereby reducing cellular motility and expansion pressure. This model provides a mechanism for contact inhibition that could explain previously unrelated experimental findings on the role played by E-cadherin, $beta$-catenin and $alpha$-catenin in the cellular phenotype and in tumorigenesis. In particular, we address the effect of a knockout of the adenomatous polyposis coli tumor suppressor gene. Potential direct tests of our model are discussed.
Circadian clocks exhibit the robustness of period and plasticity of phase against environmental changes such as temperature and nutrient conditions. Thus far, however, it is unclear how both are simultaneously achieved. By investigating distinct models of circadian clocks, we demonstrate reci- procity between robustness and plasticity: higher robustness in the period implies higher plasticity in the phase, where changes in period and in phase follow a linear relationship with a negative coef- ficient. The robustness of period is achieved by the adaptation on the limit cycle via a concentration change of a buffer molecule, whose temporal change leads to a phase shift following a shift of the limit-cycle orbit in phase space. Generality of reciprocity in clocks with the adaptation mechanism is confirmed with theoretical analysis of simple models, while biological significance is discussed.
In physics of living systems, a search for relationships of a few macroscopic variables that emerge from many microscopic elements is a central issue. We evolved gene regulatory networks so that the expression of target genes (partial system) is insensitive to environmental changes. Then, we found the expression levels of the remaining genes autonomously increase as a plastic response. Negative proportionality was observed between the average changes in target and remnant genes, reflecting reciprocity between the macroscopic robustness of homeostatic genes and plasticity of regulator genes. This reciprocity follows the lever principle, which was satisfied throughout the evolutionary course, imposing an evolutionary constraint.
Certain two-component reaction-diffusion systems on a finite interval are known to possess mesa (box-like) steadystate patterns in the singularly perturbed limit of small diffusivity for one of the two solution components. As the diffusivity D of the second component is decreased below some critical value Dc, with Dc = O(1), the existence of a steady-state mesa pattern is lost, triggering the onset of a mesa self-replication event that ultimately leads to the creation of additional mesas. The initiation of this phenomena is studied in detail for a particular scaling limit of the Brusselator model. Near the existence threshold Dc of a single steady-state mesa, it is shown that an internal layer forms in the center of the mesa. The structure of the solution within this internal layer is shown to be governed by a certain core problem, comprised of a single non-autonomous second-order ODE. By analyzing this core problem using rigorous and formal asymptotic methods, and by using the Singular Limit Eigenvalue Problem (SLEP) method to asymptotically calculate small eigenvalues, an analytical verification of the conditions of Nishiura and Ueyema [Physica D, 130, No. 1, (1999), pp. 73-104], believed to be responsible for self-replication, is given. These conditions include: (1) The existence of a saddle-node threshold at which the steady-state mesa pattern disappears; (2) the dimple-shaped eigenfunction at the threshold, believed to be responsible for the initiation of the replication process; and (3) the stability of the mesa pattern above the existence threshold. Finally, we show that the core problem is universal in the sense that it pertains to a class of reaction-diffusion systems, including the Gierer-Meinhardt model with saturation, where mesa self-replication also occurs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا