We consider here three dark matter models with the gauge symmetry of the standard model plus an additional local $U(1)_D$ factor. One model is truly secluded and the other two models begin flipped, but end up secluded. All of these models include one dark fermion and one vector boson that gains mass via the Stueckelberg mechanism. We show that the would be flipped models provide an example dark matter composed of almost least interacting particles (ALIPs). Such particles are therefore compatible with the constraints obtained from both laboratory measurements and astrophysical observations.