We consider a closed region $R$ of 3d quantum space modeled by $SU(2)$ spin-networks. Using the concentration of measure phenomenon we prove that, whenever the ratio between the boundary $partial R$ and the bulk edges of the graph overcomes a finite threshold, the state of the boundary is always thermal, with an entropy proportional to its area. The emergence of a thermal state of the boundary can be traced back to a large amount of entanglement between boundary and bulk degrees of freedom. Using the dual geometric interpretation provided by loop quantum gravity, we interprete such phenomenon as a pre-geometric analogue of Thornes Hoop conjecture, at the core of the formation of a horizon in General Relativity.