No Arabic abstract
We investigate anomalous strong lens systems, particularly the effects of weak lensing by structures in the line of sight, in models with long-lived electrically charged massive particles (CHAMPs). In such models, matter density perturbations are suppressed through the acoustic damping and the flux ratio of lens systems are impacted, from which we can constrain the nature of CHAMPs. For this purpose, first we perform $N$-body simulations and develop a fitting formula to obtain non-linear matter power spectra in models where cold neutral dark matter and CHAMPs coexist in the early Universe. By using the observed anomalous quadruple lens samples, we obtained the constraints on the lifetime ($tau_{rm Ch}$) and the mass density fraction ($r_{rm Ch}$) of CHAMPs. We show that, for $r_{rm Ch}=1$, the lifetime is bounded as $tau_{rm Ch} < 0.96,$yr (95% confidence level), while a longer lifetime $tau_{rm Ch} = 10,$yr is allowed when $r_{rm Ch} < 0.5$ at the 95% confidence level. Implications of our result for particle physics models are also discussed.
Recently it has been claimed that the warm dark matter (WDM) model cannot at the same time reproduce the observed Lyman-{alpha} forests in distant quasar spectra and solve the small-scale issues in the cold dark matter (CDM) model. As an alternative candidate, it was shown that the mixed dark matter (MDM) model that consists of WDM and CDM can satisfy the constraint from Lyman-{alpha} forests and account for the missing satellite problem as well as the reported 3.5 keV anomalous X-ray line. We investigate observational constraints on the MDM model using strong gravitational lenses. We first develop a fitting formula for the nonlinear power spectra in the MDM model by performing N-body simulations and estimate the expected perturbations caused by line-of-sight structures in four quadruply lensed quasars that show anomaly in the flux ratios. Our analysis indicates that the MDM model is compatible with the observed anomaly if the mass fraction of the warm component is smaller than 0.47 at the 95% confidence level. The MDM explanation to the anomalous X-ray line and the small-scale issues is still viable even after this constraint is taken into account.
The presence of massive particles with spin during inflation induces distinct signatures on correlation functions of primordial curvature fluctuations. In particular, the bispectrum of primordial perturbations obtains an angular dependence determined by the spin of the particle, which can be used to set constraints on the presence of such particles. If these particles are long-lived on super-Hubble scales, as is the case for example for partially massless particles, their imprint on correlation functions of curvature perturbations would be unsuppressed. In this paper, we make a forecast for how well such angular dependence can be constrained by the upcoming EUCLID spectroscopic survey via the measurement of galaxy bispectrum.
We review important reactions in the big bang nucleosynthesis (BBN) model involving a long-lived negatively charged massive particle, $X^-$, which is much heavier than nucleons. This model can explain the observed $^7$Li abundances of metal-poor stars, and predicts a primordial $^9$Be abundance that is larger than the standard BBN prediction. In the BBN epoch, nuclei recombine with the $X^-$ particle. Because of the heavy $X^-$ mass, the atomic size of bound states $A_X$ is as small as the nuclear size. The nonresonant recombination rates are then dominated by the $d$-wave $rightarrow$ 2P transition for $^7$Li and $^{7,9}$Be. The $^7$Be destruction occurs via a recombination with the $X^-$ followed by a proton capture, and the primordial $^7$Li abundance is reduced. Also, the $^9$Be production occurs via the recombination of $^7$Li and $X^-$ followed by deuteron capture. The initial abundance and the lifetime of the $X^-$ particles are constrained from a BBN reaction network calculation. We estimate that the derived parameter region for the $^7$Li reduction is allowed in supersymmetric or Kaluza-Klein (KK) models. We find that either the selectron, smuon, KK electron or KK muon could be candidates for the $X^-$ with $m_Xsim {mathcal O}(1)$ TeV, while the stau and KK tau cannot.
We draw a possible scenario for the observation of massive long-lived charged particles at the LHC detector ATLAS. The required flexibility of the detector triggers and of the identification and reconstruction systems are discussed. As an example, we focus on the measurement of the mass and lifetime of long-lived charged sleptons predicted in the framework of supersymmetric models with gauge-mediated supersymmetry (SUSY) breaking. In this case, the next-to-lightest SUSY particle can be the light scalar partner of the tau lepton, possibly decaying slowly into a gravitino. A wide region of the SUSY parameters space was explored. The accessible range and precision on the measurement of the SUSY breaking scale parameter sqrt(F) achievable with a counting method are assessed.
We examine the possibility that dark matter consists of charged massive particles (CHAMPs) in view of the cosmic microwave background (CMB) anisotropies. The evolution of cosmological perturbations of CHAMP with other components is followed in a self-consistent manner, without assuming that CHAMP and baryons are tightly coupled. We incorporate for the first time the kinetic re-coupling of the Coulomb scattering, which is characteristic of heavy CHAMPs. By a direct comparison of the predicted CMB temperature/polarization auto-correlations in CHAMP models and the observed spectra in the Planck mission, we show that CHAMPs leave sizable effects on CMB spectra if they are lighter than $10^{11},{rm GeV}$. Our result can be applicable to any CHAMP as long as its lifetime is much longer than the cosmic time at the recombination ($sim 4 times 10^{5}, {rm yr}$). An application to millicharged particles is also discussed.