We show that a properly dc-biased Josephson junction in series with two microwave resonators of different frequencies emits photon pairs in the resonators. By measuring auto- and inter-correlations of the power leaking out of the resonators, we demonstrate two-mode amplitude squeezing below the classical limit. This non-classical microwave light emission is found to be in quantitative agreement with our theoretical predictions, up to an emission rate of 2 billion photon pairs per second.
We study the quantum charge noise and measurement properties of the double Cooper pair resonance point in a superconducting single-electron transistor (SSET) coupled to a Josephson charge qubit. Using a density matrix approach for the coupled system, we obtain a full description of the measurement back-action; for weak coupling, this is used to extract the quantum charge noise. Unlike the case of a non-superconducting SET, the back-action here can induce population inversion in the qubit. We find that the Cooper pair resonance process allows for a much better measurement than a similar non-superconducting SET, and can approach the quantum limit of efficiency.
We propose a method to perform accurate and fast charge pumping in superconducting nanocircuits. Combining topological properties and quantum control techniques based on shortcuts to adiabaticity, we show that it is theoretically possible to achieve perfectly quantised charge pumping at any finite-speed driving. Model-specific errors may still arise due the difficulty of implementing the exact control. We thus assess this and other practical issues in a specific system comprised of three Josephson junctions. Using realistic system parameters, we show that our scheme can improve the pumping accuracy of this device by various orders of magnitude. Possible metrological perspectives are discussed.
Parity control of superconducting islands hosting Majorana zero modes (MZMs) is required to operate topological qubits made from proximitized semiconductor nanowires. We, therefore, study parity effects in hybrid InAs-Al single-Cooper-pair transistors (SCPTs) as a first step. In particular, we investigate the gate-charge supercurrent modulation and observe a consistent 2$e$-periodic pattern indicating a general lack of low-energy subgap states in these nanowires at zero magnetic field. In a parallel magnetic field, an even-odd pattern develops with a gate-charge spacing that oscillates as a function of field demonstrating that the modulation pattern is sensitive to the presence of a single subgap state. In addition, we find that the parity lifetime of the SCPT decreases exponentially with magnetic field as the subgap state approaches zero energy. Our work highlights the important role that intentional quasiparticle traps and superconducting gap engineering would play in topological qubits that require quenching of the island charge dispersion.
Cooper pair splitters are promising candidates for generating spin-entangled electrons. However, the splitting of Cooper pairs is a random and noisy process, which hinders further synchronized operations on the entangled electrons. To circumvent this problem, we here propose and analyze a dynamic Cooper pair splitter that produces a noiseless and regular flow of spin-entangled electrons. The Cooper pair splitter is based on a superconductor coupled to quantum dots, whose energy levels are tuned in and out of resonance to control the splitting process. We identify the optimal operating conditions for which exactly one Cooper pair is split per period of the external drive and the flow of entangled electrons becomes noiseless. To characterize the regularity of the Cooper pair splitter in the time domain, we analyze the $g^{(2)}$-function of the output currents and the distribution of waiting times between split Cooper pairs. Our proposal is feasible using current technology, and it paves the way for dynamic quantum information processing with spin-entangled electrons.
At the interface between a ferromagnetic insulator and a superconductor there is a coupling between the spins of the two materials. We show that when a supercurrent carried by triplet Cooper pairs flows through the superconductor, the coupling induces a magnon spin current in the adjacent ferromagnetic insulator. The effect is dominated by Cooper pairs polarized in the same direction as the ferromagnetic insulator, so that charge and spin supercurrents produce similar results. Our findings demonstrate a way of converting Cooper pair supercurrents to magnon spin currents.