No Arabic abstract
Motivated by recent measurements of the number density of faint AGN at high redshift, we investigate the contribution of quasars to reionization by tracking the growth of central supermassive black holes in an update of the Meraxes semi-analytic model. The model is calibrated against the observed stellar mass function at $zsim0.6-7$, the black hole mass function at $zlesssim0.5$, the global ionizing emissivity at $zsim2-5$ and the Thomson scattering optical depth. The model reproduces a Magorrian relation in agreement with observations at $z<0.5$ and predicts a decreasing black hole mass towards higher redshifts at fixed total stellar mass. With the implementation of an opening angle of 80 deg for quasar radiation, corresponding to an observable fraction of ${sim}23.4$ per cent due to obscuration by dust, the model is able to reproduce the observed quasar luminosity function at $zsim0.6-6$. The stellar light from galaxies hosting faint AGN contributes a significant or dominant fraction of the UV flux. At high redshift, the model is consistent with the bright end quasar luminosity function and suggests that the recent faint $zsim4$ AGN sample compiled by Giallongo et al. (2015) includes a significant fraction of stellar light. Direct application of this luminosity function to the calculation of AGN ionizing emissivity consequently overestimates the number of ionizing photons produced by quasars by a factor of 3 at $zsim6$. We conclude that quasars are unlikely to make a significant contribution to reionization.
The highly neutral inter-galactic medium (IGM) during the Epoch of Reionization (EoR) is expected to suppress Ly$alpha$ emission with damping-wing absorption, causing nearly no Ly$alpha$ detection from star-forming galaxies at $z{sim}8$. However, spectroscopic observations of the 4 brightest galaxies (${rm H}_{160}{sim}25$ mag) at these redshifts do reveal prominent Ly$alpha$ line, suggesting locally ionised IGM. In this paper, we explore the Ly$alpha$ IGM transmission and environment of bright galaxies during the EoR using the Meraxes semi-analytic model. We find brighter galaxies to be less affected by damping-wing absorption as they are effective at ionizing surrounding neutral hydrogen. Specifically, the brightest sources (${rm H}_{160}{lesssim}25.5$ mag) lie in the largest ionized regions in our simulation, and have low attenuation of their Ly$alpha$ from the IGM (optical depth ${<}1$). Fainter galaxies (25.5 mag${<}{rm H}_{160}{<}27.5$ mag) have transmission that depends on UV luminosity, leading to a lower incidence of Ly$alpha$ detection at fainter magnitudes. This luminosity-dependent attenuation explains why Ly$alpha$ has only been observed in the brightest galaxies at $z{sim}8$. Follow-up observations have revealed counterparts in the vicinity of these confirmed $z{sim}8$ Ly$alpha$ emitters. The environments of our modelled analogues agree with these observations in the number of nearby galaxies, which is a good indicator of whether Ly$alpha$ can be detected among fainter galaxies. At the current observational limit, galaxies with ${ge}2$--5 neighbours within $2{times}2$ are ${sim}2$--3 times more likely to show Ly$alpha$ emission. JWST will discover an order of magnitude more neighbours, revealing ${gtrsim}50$ galaxies in the largest ionizing bubbles and facilitating direct study of reionization morphology.
We investigate how the hydrostatic suppression of baryonic accretion affects the growth rate of dark matter halos during the Epoch of Reionization. By comparing halo properties in a simplistic hydrodynamic simulation in which gas only cools adiabatically, with its collisionless equivalent, we find that halo growth is slowed as hydrostatic forces prevent gas from collapsing. In our simulations, at the high redshifts relevant for reionization (between ${sim}6$ and ${sim}11$), halos that host dwarf galaxies ($lesssim 10^{9} mathrm{M_odot}$) can be reduced by up to a factor of 2 in mass due to the hydrostatic pressure of baryons. Consequently, the inclusion of baryonic effects reduces the amplitude of the low mass tail of the halo mass function by factors of 2 to 4. In addition, we find that the fraction of baryons in dark matter halos hosting dwarf galaxies at high redshift never exceeds ${sim}90%$ of the cosmic baryon fraction. When implementing baryonic processes, including cooling, star formation, supernova feedback and reionization, the suppression effects become more significant with further reductions of ${sim}30%$ to 60%. Although convergence tests suggest that the suppression may become weaker in higher resolution simulations, this suppressed growth will be important for semi-analytic models of galaxy formation, in which the halo mass inherited from an underlying N-body simulation directly determines galaxy properties. Based on the adiabatic simulation, we provide tables to account for these effects in N-body simulations, and present a modification of the halo mass function along with explanatory analytic calculations.
We study dwarf galaxy formation at high redshift ($zge5$) using a suite of high- resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.
We investigate the clustering properties of Lyman-break galaxies (LBGs) at $zsim6$ - $8$. Using the semi-analytical model {scshape Meraxes} constructed as part of the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at $zsim6$ - $8$. Overall, we find that the predicted ACFs are in good agreement with recent measurements at $zsim 6$ and $zsim 7.2$ from observations consisting of the Hubble eXtreme Deep Field (XDF), the Hubble Ultra-Deep Field (HUDF) and Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude $M_{{rm AB(1600)}} < -19.4$ at $6lesssim z lesssim 8$ reside in dark matter haloes of mean mass $sim 10^{11.0}$- $10^{11.5} M_{rm odot}$, and this dark matter halo mass does not evolve significantly during reionisation.
We study the sizes, angular momenta and morphologies of high-redshift galaxies using an update of the Meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts $z=0$-$10$. We find that the effective radius of a galaxy disc scales with UV luminosity as $R_epropto L_{textrm{UV}}^{0.33}$ at $z=5$-$10$, and with stellar mass as $R_epropto M_ast^{0.24}$ at $z=5$ but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as $R_e propto (1+z)^{-m}$, where $m=1.98pm0.07$ for galaxies with $(0.3$-$1)L^ast_{z=3}$ and $m=2.15pm0.05$ for galaxies with $(0.12$-$0.3)L^ast_{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than one and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by $sim0.5$ dex from $z=7$ to $z=2$. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with $M_astsimeq10^{10}$-$10^{11.5}M_odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.