No Arabic abstract
Nonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many interesting and important phenomena which have profoundly changed our technological landscape over the last 50 years. Recently the ability to engineer quantum metamaterials through hybridisation has allowed to explore these nonlinear effects in systems with no natural analogue. Here we investigate amplitude bistability, which is one of the most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively coupled to an ensemble of nitrogen-vacancy centres. One of the exciting properties of this spin system is its extremely long spin life-time, more than ten orders of magnitude longer than other relevant timescales of the hybrid system. This allows us to dynamically explore this nonlinear regime of cavity quantum electrodynamics (cQED) and demonstrate a critical slowing down of the cavity population on the order of several tens of thousands of seconds - a timescale much longer than observed so far for this effect. Our results provide the foundation for future quantum technologies based on nonlinear phenomena.
We explore the joint activated dynamics exhibited by two quantum degrees of freedom: a cavity mode oscillator which is strongly coupled to a superconducting qubit in the strongly coherently driven dispersive regime. Dynamical simulations and complementary measurements show a range of parameters where both the cavity and the qubit exhibit sudden simultaneous switching between two metastable states. This manifests in ensemble averaged amplitudes of both the cavity and qubit exhibiting a partial coherent cancellation. Transmission measurements of driven microwave cavities coupled to transmon qubits show detailed features which agree with the theory in the regime of simultaneous switching.
This Report explores recent advances in our understanding of the physics of open quantum systems (OQSs) which consist of some localized region that is coupled to an external environment. Examples of such systems may be found in numerous areas of physics including mesoscopic physics that provides the main focus of this review. We provide a detailed discussion of the behavior of OQSs in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region ($Q$), embedded into a well-defined environment ($P$) of scattering wavefunctions (with $Q+P=1$). The $Q$ subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of $Q$; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. In addition to discussing experiments on mesoscopic quantum point contacts, we also review manifestations of DPTs in mesoscopic devices and other systems. Other possible manifestations of this phenomenon are presented. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior.
We present a fast and robust framework to prepare non-classical states of a bosonic mode exploiting a coherent exchange of excitations with a two-level system ruled by a Jaynes-Cummings interaction mechanism. Our protocol, which is built on shortcuts to adiabaticity, allows for the generation of arbitrary Fock states of the bosonic mode, as well as coherent quantum superpositions of a Schrodinger cat-like form. In addition, we show how to obtain a class of photon-shifted states where the vacuum population is removed, a result akin to photon addition, but displaying more non-classicality than standard photon-added states. Owing to the ubiquity of the spin-boson interaction that we consider, our proposal is amenable for implementations in state-of-the-art experiments.
Spin ensemble based hybrid quantum systems suffer from a significant degree of decoherence resulting from the inhomogeneous broadening of the spin transition frequencies in the ensemble. We demonstrate that this strongly restrictive drawback can be overcome simply by burning two narrow spectral holes in the spin spectral density at judiciously chosen frequencies. Using this procedure we find an increase of the coherence time by more than an order of magnitude as compared to the case without hole burning. Our findings pave the way for the practical use of these hybrid quantum systems for the processing of quantum information.
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors are emerged as sharp frequency switchings of the cavity magnon-polaritons (CMPs) and related to the transition between states with large and small number of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.