Do you want to publish a course? Click here

The early B-type star Rho Oph A is an X-ray lighthouse

168   0   0.0 ( 0 )
 Added by Ignazio Pillitteri
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a 140 ks XMM-Newton observation of the B2 star $rho$ Ophiuchi A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely corresponds to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK ($kTsim5$ keV). From the analysis of its rise, we infer a magnetic field of $ge300$ G and a size of the flaring region of $sim1.4-1.9times10^{11}$ cm, which corresponds to $sim25%-30%$ of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time span of $ge$2.5 years, and suggests an overall large scale dipolar magnetic field that produces an extended feature on the stellar surface. In the second scenario, a low mass unknown companion is the emitter of X-rays and it should orbit extremely close to the surface of the primary in a locked spin-orbit configuration, almost on the verge of collapsing onto the primary. As such, the X-ray activity of the secondary star would be enhanced by its young age, and the tight orbit as in RS Cvn systems and $rho$ Ophiuchi would constitute an extreme system that is worthy of further investigation.



rate research

Read More

85 - P. Leto , C. Trigilio , F. Leone 2020
We present new ATCA multi-wavelength radio measurements (range 2.1-21.2 GHz) of the early-type magnetic star rho Oph A, performed in March 2019 during 3 different observing sessions. These new ATCA observations evidence a clear rotational modulation of the stellar radio emission and the detection of coherent auroral radio emission from rho Oph A at 2.1 GHz. We collected high-resolution optical spectra of rho Oph A acquired by several instruments over a time span of about ten years. We also report new magnetic field measurements of rho Oph A that, together with the radio light curves and the temporal variation of the equivalent width of the HeI line (lambda=5015 Angstrom), were used to constrain the rotation period and the stellar magnetic field geometry. The above results have been used to model the stellar radio emission, modelling that allowed us to constrain the physical condition of rho Oph As magnetosphere. Past XMM measurements showed periodic X-ray pulses from rho Oph A. We correlate the X-ray light curve with the magnetic field geometry of rho Oph A. The already published XMM data have been re-analyzed showing that the X-ray spectra of rho Oph A are compatible with the presence of a non-thermal X-ray component. We discuss a scenario where the emission phenomena occurring at the extremes of the electromagnetic spectrum, radio and X-ray, are directly induced by the same plasma process. We interpret the observed X-ray and radio features of rho Oph A as having an auroral origin.
249 - P. Leto , C. Trigilio , C.S. Buemi 2020
The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multi-wavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star rho OphC, which is a flat-spectrum non-thermal radio source. The rho OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60% at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the rho OphC magnetosphere. Interestingly, the detection of the rho OphCs ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. rho OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.
X-rays from massive stars are ubiquitous yet not clearly understood. In an XMM-Newton observation devoted to observe the first site of star formation in the $rho$ Ophiuchi dark cloud, we detect smoothly variable X-ray emission from the B2IV+B2V system of $rho$ Ophiuchi. Tentatively we assign the emission to the primary component. The light curve of the pn camera shows a first phase of low, almost steady rate, then a rise phase of duration of 10 ks, followed by a high rate phase. The variability is seen primarily in the band 1.0-8.0 keV while little variability is detected below 1 keV. The spectral analysis of the three phases reveals the presence of a hot component at 3.0 keV that adds up to two relatively cold components at 0.9 keV and 2.2 keV. We explain the smooth variability with the emergence of an extended active region on the surface of the primary star due to its fast rotation (v $sin~i sim315$ km/s). We estimate that the region has diameter in the range $0.5-0.6$ R$_*$. The hard X-ray emission and its variability hint a magnetic origin, as suggested for few other late-O$-$early-B type stars. We also discuss an alternative explanation based on the emergence from occultation of a young (5-10 Myr) low mass companion bright and hot in X-rays.
149 - S. Pellegrini 2010
Nuclear hard X-ray luminosities (Lx,nuc) for a sample of 112 early type galaxies within a distance of 67 Mpc are used to investigate their relationship with the central galactic black hole mass Mbh, the inner galactic structure (using the parameters describing its cuspiness), the age of the stellar population in the central galactic region, the hot gas content and the core radio luminosity. Lx,nuc ranges from 10^{38} to 10^{42} erg/s, and the Eddington ratio Lx,nuc/Ledd from 10^{-9} to 10^{-4}. Lx,nuc increases on average with the galactic luminosity Lb and Mbh, with a wide variation by up to 4 orders of magnitude at any fixed Lb>6x10^9 Lb,sun or Mbh>10^7 Msun. This large range should reflect a large variation of the mass accretion rate dotMbh. On the circumnuclear scale, dotMbh at fixed Lb (or Mbh) could vary due to differences in the fuel production rate from the stellar mass return linked to the inner galactic structure; however, dotMbh should vary with cuspiness by a factor exceeding a few only in hot gas poor galaxies and for large differences in the core radius. Lx,nuc does not depend on age, but less luminous nuclei are found among galaxies with a younger stellar component. Lx,nuc is detected both in gas poor and gas rich galaxies, on average increases with the total galactic hot gas cooling rate L_{X,ISM}, but again with a large variation. The lack of a tight relationship between Lx,nuc and the circumnuclear and total gas content can be explained if the gas is heated by black hole feedback, and/or the mass effectively accreted can be largely reduced with respect to that entering the circumnuclear region. Differently from Lx,nuc, the 5 GHz VLA luminosity shows a trend with the inner galactic structure similar to that of the total soft X-ray emission; therefore they could both be produced by the hot gas.
94 - I. Pillitteri 2017
Circumstantial evidence suggests that magnetism and enhanced X-ray emission are likely correlated in early B-type stars: similar fractions of them ($sim$ 10 %) are strong and hard X-ray sources and possess strong magnetic fields. It is also known that some B-type stars have spots on their surface. Yet up to now no X-ray activity associated with spots on early-type stars was detected. In this Letter we report the detection of a magnetic field on the B2V star $rho$ Oph A. Previously, we assessed that the X-ray activity of this star is associated with a surface spot, herewith we establish its magnetic origin. We analyzed FORS2 ESO VLT spectra of $rho$ Oph A taken at two epochs and detected a longitudinal component of the magnetic field of order of $sim500$ G in one of the datasets. The detection of the magnetic field only at one epoch can be explained by stellar rotation which is also invoked to explain observed periodic X-ray activity. From archival HARPS ESO VLT high resolution spectra we derived the fundamental stellar parameters of $rho$ Oph A and further constrained its age. We conclude that $rho$ Oph A provides strong evidence for the presence of active X-ray emitting regions on young magnetized early type stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا