Do you want to publish a course? Click here

A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime

131   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present and implement a non-destructive detection scheme for the transition probability readout of an optical lattice clock. The scheme relies on a differential heterodyne measurement of the dispersive properties of lattice-trapped atoms enhanced by a high finesse cavity. By design, this scheme offers a 1st order rejection of the technical noise sources, an enhanced signal-to-noise ratio, and an homogeneous atom-cavity coupling. We theoretically show that this scheme is optimal with respect to the photon shot noise limit. We experimentally realize this detection scheme in an operational strontium optical lattice clock. The resolution is on the order of a few atoms with a photon scattering rate low enough to keep the atoms trapped after detection. This scheme opens the door to various different interrogations protocols, which reduce the frequency instability, including atom recycling, zero-dead time clocks with a fast repetition rate, and sub quantum projection noise frequency stability.



rate research

Read More

We demonstrate a new method of cavity-enhanced non-destructive detection of atoms for a strontium optical lattice clock. The detection scheme is shown to be linear in atom number up to at least 10,000 atoms, to reject technical noise sources, to achieve signal to noise ratio close to the photon shot noise limit, to provide spatially uniform atom-cavity coupling, and to minimize inhomogeneous ac Stark shifts. These features enable detection of atoms with minimal perturbation to the atomic state, a critical step towards realizing an ultra-high-stability, quantum-enhanced optical lattice clock.
Existing optical lattice clocks demonstrate a high level of performance, but they remain complex experimental devices. In order to address a wider range of applications including those requiring transportable devices, it will be necessary to simplify the laser systems and reduce the amount of support hardware. Here we demonstrate two significant steps towards this goal: demonstration of clock signals from a Sr lattice clock based solely on semiconductor laser technology, and a method for finding the clock transition (based on a coincidence in atomic wavelengths) that removes the need for extensive frequency metrology hardware. Moreover, the unexpected high contrast in the signal revealed evidence of density dependent collisions in Sr-88 atoms.
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.
We report on the realization of a magneto-optical trap (MOT) for metastable strontium operating on the 2.92 $mu$m transition between the energy levels $5s5p~^3mathrm{P}_2$ and $5s4d~^3mathrm{D}_3$. The strontium atoms are initially captured in a MOT operating on the 461 nm transition between the energy levels $5s^2~^1mathrm{S}_0$ and $5s5p~^1mathrm{P}_1$, prior to being transferred into the metastable MOT and cooled to a final temperature of 6 $mu$K. Challenges arising from aligning the mid-infrared and 461 nm light are mitigated by employing the same pyramid reflector to realize both MOTs. Finally, the 2.92 $mu$m transition is used to realize a full cooling sequence for an optical lattice clock, in which cold samples of $^{87}mathrm{Sr}$ are loaded into a magic-wavelength optical lattice and initialized in a spin-polarized state to allow high-precision spectroscopy of the $5s^2~^1mathrm{S}_0$ to $5s5p~^3mathrm{P}_0$ clock transition.
We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879 (5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. Two previous measurements of this transition were found to disagree by about 2x10^{-13}, i.e. almost four times the combined error bar, instilling doubt on the potential of optical lattice clocks to perform at a high accuracy level. In perfect agreement with one of these two values, our measurement essentially dissipates this doubt.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا