Do you want to publish a course? Click here

Effect of magnetic field on the hysteresis phenomena and floating potential oscillations in a reflex plasma source

80   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

An experimental investigation on the periodic and chaotic oscillations in a reflex plasma source in presence of magnetic field is presented. The experiment is conducted in a reflex plasma source, consisting of two cathodes and a ring anode. A penning type DC glow discharge in an uniform axial magnetic field is initiated in the background of argon gas. The current-voltage characteristics near the breakdown voltage show a hysteresis with two distinct discharge current regimes. The effect of magnetic field on the discharge current and floating potential oscillations is studied when the discharge is operated within this hysteresis loop. At a typical axial magnetic field, the discharge transits from high discharge current regime (beyond 4-5 mA), an oscillation free regime, to a low discharge current regime (less than 1 mA). Depending upon the discharge parameters, low discharge current regime shows either the periodic or chaotic oscillation in the frequency range of 1-50 KHz. The frequency of periodic oscillation increases with the increase in magnetic field up to 90 Gauss and with further increase in magnetic field, the periodic oscillation becomes chaotic in nature.



rate research

Read More

The ionization efficiency of helicon plasma discharge is explored by changing the low axial magnetic field gradients near the helicon antenna. The highest plasma density is found for a most possible diverging field near the antenna by keeping the other operating condition constant. Measurement of axial wave number together with estimated radial wavenumber suggests the oblique mode propagation of helicon wave along the resonance cone boundary. Propagation of helicon wave near the resonance cone angle boundary can excite electrostatic fluctuations which subsequently can deposit energy in the plasma. This process has been shown to be responsible for peaking in density in low field helicon discharges, where the helicon wave propagates at an angle with respect to the applied uniform magnetic field. The increased efficiency can be explained on the basis of multiple resonances for multimode excitation by the helicon antenna due to the availability of a broad range of magnetic field values in the near field of the antenna when a diverging magnetic field is applied in the source.
Fully non-inductive plasma current start-up without the central solenoid in ECW plasma was used on EXL-50 Spherical Torus with a weak external vertical field (Bv). Generally, the number of electrons leaving to the vessel wall by the gradient Bt is larger than ions, and the positive potential was built up in plasma. The relationship between floating potential and the plasma current was studied using the Langmuir probes near the boundary. The results show that the floating potential is positive (about 200V) and has a strong correlation with plasma current. In open magnetic field, the plasma current is driven by the high energy electrons in preferential confinement, the plasma current and potential approximately positively correlated with total electron density. After forming the closed flux surface, the plasma current consists mainly of the ECW driven current, and potential is negatively correlated with plasma current. By actively adjusting the Bv, it demonstrated that the positive voltage is approximately inversely correlated with the Bv and plasma current (Ip). Considering that the plasma temperature near the boundary is quite low (~eV), the positive voltage near the boundary caused by the high-energy electron loss. Therefore, the measurements of the boundary potential are important for the study of high-energy electron confinement performance, noninductive plasma current start-up and current driven.
300 - K. Deka , S. Adhikari , R. Moulick 2020
A low-pressure magnetized plasma is studied to find the dependency of sheath properties on ion-neutral collisions in presence of an inhomogeneous magnetic field. A self-consistent one-dimensional two-fluid hydrodynamic model is considered, and the system of equations is solved numerically. The study reveals that the width of the plasma sheath expands and space charge increases with collisions. The ion-neutral collisions and the inhomogeneous magnetic field restrict the ions to move towards the surface. The movement of the ions towards the wall can be controlled by choosing a suitable configuration of the magnetic field and ion-neutral collision frequency. A comparison between two different magnetic field configurations has been presented alongside to differentiate the commonly found scenarios in the field. The outcome of the study is supposed to help in understanding the complex dynamics of ions in plasma confinement and plasma processing of materials. Furthermore, the present work seeks to create a framework for two-fluid modeling of magnetized plasmas with any arbitrary magnetic field profiles. The analysis provided here is supposed to act as a basis for any future work in the respective field.
We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma ($< 20$ $mu$s), the size of the image is dominated by the time-of-flight Coulomb explosion of the dense ion cloud. For later times, we measure the 2-D Gaussian width of the ion image, obtaining the transverse expansion velocity as a function of magnetic field (up to 70 G). We observe that the expansion velocity scales as B$^{-1/2}$, explained by a nonlinear ambipolar diffusion model with anisotropic diffusion in two different directions.
Noncentral collision of heavy ions can generate large magnetic field in its neighbourhood. We describe a method to calculate the effect of this field on the dilepton emission rate from the colliding region, when it reaches thermal equilibrium. It is calculated in the real time method of thermal field theory. We find that the rate is affected significantly only for lower momenta of dileptons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا