Do you want to publish a course? Click here

Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744-28

62   0   0.0 ( 0 )
 Added by Andrea Sanna
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as $dot{ u}proptodot{M}^{beta}$, we fitted the pulse phase delays obtaining a value of $beta=0.96(3)$. Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained the source distance to be between 3.4-4.1 kpc, assuming a disc viscous parameter $alpha$ to be in the range 0.1-1. Finally, we investigated the presence of a possible spin-down torque by adding a quadratic component to the pulse phase delay model. The marginal statistical improvement of the updated model does not allow us to firmly confirm the presence of this component.



rate research

Read More

The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/HETG observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E_l ~ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ~ 52 degrees and an inner disk radius of R_in ~ 85 GM/c^2, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ~ (2-6)E10 G. Furthermore, we identify an absorption feature near ~6.85 keV could correspond to blue-shifted Fe xxv and point to a fast disk wind with an outflow velocity of v_out ~ (7.5-8.2)E3 km/s (~0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.
GRO J1744-28, commonly known as the `Bursting Pulsar, is a low mass X-ray binary containing a neutron star and an evolved giant star. This system, together with the Rapid Burster (MXB 1730-33), are the only two systems that display the so-called Type II X-ray bursts. These type of bursts, which last for 10s of seconds, are thought to be caused by viscous instabilities in the disk; however the Type II bursts seen in GRO J1744-28 are qualitatively very different from those seen in the archetypal Type II bursting source the Rapid Burster. To understand these differences and to create a framework for future study, we perform a study of all X-ray observations of all 3 known outbursts of the Bursting Pulsar which contained Type II bursts, including a population study of all Type II X-ray bursts seen by RXTE. We find that the bursts from this source are best described in four distinct phenomena or `classes and that the characteristics of the bursts evolve in a predictable way. We compare our results with what is known for the Rapid Burster and put out results in the context of models that try to explain this phenomena.
GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: missing link systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of opportunity to test our understanding of these systems in an entirely unexplored physical regime.
We report on a 10 ks simultaneous Chandra/HETG-NuSTAR observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 years of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors, and well described by a blackbody (BB), a power-law with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disc, we estimate its inner (magnetospheric) radius to be about 4x10^7 cm, which translates to a surface dipole field B~9x10^10 G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a power-law with an exponential rolloff and a 10~keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.
103 - J. Mejia 2001
We present the results of the GRANAT/SIGMA hard X-/soft gamma-ray long-term monitoring of the Galactic Center (GC) region concerning the source GRO J1744-28, discovered on 1995 Dec. 2 by CGRO/BATSE. SIGMA observed the region containing the source in 14 opportunities between 1990 and 1997. In two of these observing sessions, corresponding to March 1996 and March 1997, GRO J1744-28 was detected with a confidence level greater than 5(sigma) in the 35-75 keV energy band without detection in the 75-150 keV energy band. For the other sessions, upper limits of the flux are indicated. The particular imaging capabilities of the SIGMA telescope allow us to identify, specifically, the source position in the very crowded GC region, giving us a mean flux of (73.1 +/- 5.5)E-11 and (44.7 +/- 6.4)E-11 ergs cm^-2 s^-1 in the 35-75 keV energy band, for the March 1996 and March 1997 observing sessions, respectively. Combining the March 1997 SIGMA and BATSE observations, we found evidence pointing to the type-II nature of the source bursts for this period. For the same observing campaigns, spectra were obtained in the 35 to 150 keV energy band. The best fit corresponds to an optically thin thermal Bremsstrahlung with F(50 keV)=(3.6 +/- 0.6)E-4 phot cm^-2 s^-1 keV^-1 and kT(Bremss)=28 +/- 7 keV, for the first campaign, and F(50 keV)=(2.3 +/- 0.7)E-4 phot cm^-2 s^-1 keV^-1 and kT(Bremss)=18 (+12/-7) keV, for the second. This kind of soft spectrum is typical of binary sources containing a neutron star as the compact object, in contrast to the harder spectra typical of systems containing a black hole candidate
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا