Do you want to publish a course? Click here

Crystal Symmetry Lowering in Chiral Multiferroic Ba$_3$TaFe$_3$Si$_2$O$_{14}$ observed by X-Ray Magnetic Scattering

141   0   0.0 ( 0 )
 Added by Mahesh Ramakrishnan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba$_3$TaFe$_3$Si$_2$O$_{14}$ at the Fe $L_{2,3}$ and oxygen $K$ edges. Below $T_N$ ($approx27K$) we observe the satellite reflections $(0,0,tau)$, $(0,0,2tau)$, $(0,0,3tau)$ and $(0,0,1-3tau)$ where $tau approx 0.140 pm 0.001$. The dependence of the scattering intensity on X-ray polarization and azimuthal angle indicate that the odd harmonics are dominated by the out-of-plane ($mathbf{hat{c}}$-axis) magnetic dipole while the $(0,0,2tau)$ originates from the electron density distortions accompanying magnetic order. We observe dissimilar energy dependences of the diffraction intensity of the purely magnetic odd-harmonic satellites at the Fe $L_3$ edge. Utilizing first-principles calculations, we show that this is a consequence of the loss of threefold crystal symmetry in the multiferroic phase.



rate research

Read More

316 - C Toulouse 2015
The chiral langasite Ba$_3$NbFe$_3$Si$_2$O$_{14}$ is a multiferroic compound. While its magnetic order below T$_N$=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature dependence to unravel possible crystal symmetry breaking. We combined optical measurements (both infrared and Raman spectroscopy) with ab initio calculations and show that signatures of a polar state are clearly present in the phonon spectrum even at room temperature. An additional symmetry lowering occurs below 120~K as seen from emergence of softer phonon modes in the THz range. These results confirm the multiferroic nature of this langasite and open new routes to understand the origin of the polar state.
168 - Mickael Loire 2010
The spin wave excitations emerging from the chiral helically modulated 120$^{circ}$ magnetic order in a langasite Ba$_3$NbFe$_3$Si$_2$O$_{14}$ enantiopure crystal were investigated by unpolarized and polarized inelastic neutron scattering. A dynamical fingerprint of the chiral ground state is obtained, singularized by (i) spectral weight asymmetries answerable to the structural chirality and (ii) a full chirality of the spin correlations observed over the whole energy spectrum. The intrinsic chiral nature of the spin waves elementary excitations is shown in absence of macroscopic time reversal symmetry breaking.
172 - Laura Chaix 2013
We have determined the terahertz spectrum of the chiral langasite Ba$_3$NbFe$_3$Si$_2$O$_{14}$ by means of synchrotron-radiation measurements. Two excitations are revealed that are shown to have a different nature. The first one, purely magnetic, is observed at low temperature in the magnetically ordered phase and is assigned to a magnon. The second one persits far into the paramagnetic phase and exhibits both an electric and a magnetic activity at slightly different energies. This magnetoelectric excitation is interpreted in terms of atomic rotations and requires a helical electric polarization.
For a symmetry consistent theoretical description of the multiferroic phase of Ba$_2$CoGe$_2$O$_7$ a precise knowledge of its crystal structure is a prerequisite. In our previous synchrotron X-ray diffraction experiment on multiferroic Ba$_2$CoGe$_2$O$_7$ at room temperature we found forbidden reflections that favour the tetragonal-to-orthorhombic symmetry lowering of the titled compound. Here, we report the results of room-temperature single-crystal diffraction studies with both hot and cold neutrons to differentiate between the real symmetry lowering and multiple diffraction (the Renninger effect). A comparison of the experimental multiple diffraction patterns with simulated ones rules out the symmetry lowering. Thus, the structural model based on the tetragonal space group $Pbar{4}2_1m$ was selected to describe the Ba$_2$CoGe$_2$O$_7$ symmetry at room temperature. The precise structural parameters from neutron diffraction at 300K are presented and compared with the previous X-ray diffraction results.
We use resonant inelastic x-ray scattering (RIXS) at the Cu L$_3$ edge to measure the charge and spin excitations in the half-stuffed Cu--O planes of the cuprate antiferromagnet Ba$_2$Cu$_3$O$_4$Cl$_2$. The RIXS line shape reveals distinct contributions to the $dd$ excitations from the two structurally inequivalent Cu sites, which have different out-of-plane coordinations. The low-energy response exhibits magnetic excitations. We find a spin-wave branch whose dispersion follows the symmetry of a CuO$_2$ sublattice, similar to the case of the fully-stuffed planes of tetragonal CuO (T-CuO). Its bandwidth is closer to that of a typical cuprate material, such as Sr$_2$CuO$_2$Cl$_2$, than it is to that of T-CuO. We interpret this result as arising from the absence of the effective four-spin inter-sublattice interactions that act to reduce the bandwidth in T-CuO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا