Both scalar fields and (generalized) Chaplygin gases have been widely used separately to characterize the dark sector of the Universe. Here we investigate the cosmological background dynamics for a mixture of both these components and quantify the fractional abundances that are admitted by observational data from supernovae of type Ia and from the evolution of the Hubble rate. Moreover, we study how the growth rate of (baryonic) matter perturbations is affected by the dark-sector perturbations.
Yes, but only for a parameter value that makes it almost coincide with the standard model. We reconsider the cosmological dynamics of a generalized Chaplygin gas (gCg) which is split into a cold dark matter (CDM) part and a dark energy (DE) component with constant equation of state. This model, which implies a specific interaction between CDM and DE, has a $Lambda$CDM limit and provides the basis for studying deviations from the latter. Including matter and radiation, we use the (modified) CLASS code cite{class} to construct the CMB and matter power spectra in order to search for a gCg-based concordance model that is in agreement with the SNIa data from the JLA sample and with recent Planck data. The results reveal that the gCg parameter $alpha$ is restricted to $|alpha|lesssim 0.05$, i.e., to values very close to the $Lambda$CDM limit $alpha =0$. This excludes, in particular, models in which DE decays linearly with the Hubble rate.
In this paper we consider a cosmological model whose main components are a scalar field and a generalized Chaplygin gas. We obtain an exact solution for a flat arbitrary potential. This solution have the right dust limit when the Chaplygin parameter $Arightarrow 0$. We use the dynamical systems approach in order to describe the cosmological evolution of the mixture for an exponential self-interacting scalar field potential. We study the scalar field with an arbitrary self-interacting potential using the Method of $f$-devisers. Our results are illustrated for the special case of a coshlike potential. We find that usual scalar-field-dominated and scaling solutions cannot be late-time attractors in the presence of the Chaplygin gas (with $alpha>0$). We recover the standard results at the dust limit ($Arightarrow 0$). In particular, for the exponential potential, the late-time attractor is a pure generalized Chaplygin solution mimicking an effective cosmological constant. In the case of arbitrary potentials, the late-time attractors are de Sitter solutions in the form of a cosmological constant, a pure generalized Chaplygin solution or a continuum of solutions, when the scalar field and the Chaplygin gas densities are of the same orders of magnitude. The different situations depend on the parameter choices.
This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $H(z)$ data and 1048 Supernovae data from Panteon, a lower limit for the mass of the scalar field was obtained, $m geq 5.1times 10^{-34} $eV and $H_0=69.5^{+2.0}_{-2.1}text{ km s}^{-1}text{Mpc}^{-1}$. Also, the present dark matter density parameter was obtained as $Omega_phi = 0.230^{+0.033}_{-0.031}$ at $2sigma$ confidence level. The results are in good agreement to standard model of cosmology, showing that SFDM model is viable in describing the dark matter content of the universe.
In this paper we investigate the global dynamics for the minimally coupled scalar field representation of the modified Chaplygin gas in the context of flat FLRW cosmology. The tool for doing this is a new set of bounded variables that lead to a regular dynamical system. It is shown that the exact modified Chaplygin gas perfect fluid solution appears as a straight line in the associated phase plane. It is also shown that no other solutions stay close to this solution during their entire temporal evolution, but that there exists an open subset of solutions that stay arbitrarily close during an intermediate time interval, and into the future in the case the scalar field potential exhibits a global minimum.
We derive non-relativistic equations of motion for the formation of cosmological structure in a Scalar Field Dark Matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the full equations of motion written in the Newtonian gauge of scalar perturbations, we separate out the fields involved into relativistic and non-relativistic parts, and find the equations of motion for the latter that can be used to build up the full solution. One important assumption will also be that the SFDM field is in the regime of fast oscillations, under which its behavior is exactly that of cold dark matter. The resultant equations are quite similar to the Schrodinger-Poisson system of Newtonian boson stars plus relativistic leftovers. We exploit that similarity to show how to simulate, with minimum numerical effort, the formation of cosmological structure in SFDM models and others alike, and ultimately prove their viability as complete dark matter models.
S. del Campo
,J.C. Fabris
,R. Herrera
.
(2017)
.
"Is the cosmological dark sector better modeled by a generalized Chaplygin gas or by a scalar field?"
.
Winfried Zimdahl
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا