Do you want to publish a course? Click here

The star formation environment of the FU Ori type star V582 Aur

117   0   0.0 ( 0 )
 Added by Maria Kun
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the environment of the FU Ori type star V582 Aur. Our aim is to explore the star-forming region associated with this young eruptive star. Using slitless spectroscopy we searched for H alpha emission stars within a field of 11.5arcmin times 11.5arcmin, centred on V582 Aur. Based on UKIDSS and Spitzer Space Telescope data we further selected infrared-excess young stellar object candidates. In all, we identified 68 candidate low-mass young stars, 16 of which exhibited H alpha emission in the slitless spectroscopic images. The colour-magnitude diagram of the selected objects, based on IPHAS data, suggests that they are low-mass pre-main-sequence stars associated with the Aur OB 1 association, located at a distance of 1.3 kpc from the Sun. The bright-rimmed globules in the local environment of V582 Aur probably belong to the dark cloud LDN~1516. Our results suggest that star formation in these globules might have been triggered by the radiation field of a few hot members of Aur OB 1. The bolometric luminosity of V582 Aur, based on archival photometric data and on the adopted distance, is 150-320 Lsun.



rate research

Read More

V582 Aur is a pre-main sequence FU Orionis type eruptive star, which entered a brightness minimum in 2016 March due to changes in the line-of-sight extinction. Here, we present and analyze new optical $B$, $V$, $R_C$ and $I_C$ band multiepoch observations and new near-infrared $J$, $H$ and $K_S$ band photometric measurements from 2018 January$-$2019 February, as well as publicly available mid-infrared WISE data. We found that the source shows a significant optical$-$near-infrared variability, and the current brightness minimum has not completely finished yet. If the present dimming originates from the same orbiting dust clump that caused a similar brightness variation in 2012, than our results suggest a viscous spreading of the dust particles along the orbit. Another scenario is that the current minimum is caused by a dust structure, that is entering and leaving the inner part of the system. The WISE measurements could be consistent with this scenario. Our long-term data, as well as an accretion disk modeling hint at a general fading of V582 Aur, suggesting that the source will reach the quiescent level in $sim$80 years.
We present ALMA observations of 12CO, 13CO, and C18O J=2--1 lines and the 230 GHz continuum for the FU Ori-type object (FUor) V900 Mon (d~1.5 kpc), for which the accretion burst was triggered between 1953 and 2009. We identified CO emission associated with a molecular bipolar outflow extending up to a ~10^4 au scale and a rotating molecular envelope extending over >10^4 au. The interaction with the hot energetic FUor wind, which was observed using optical spectroscopy, appears limited to a region within ~400 au of the star. The envelope mass and the collimation of the extended CO outflow suggest that the progenitor of this FUor is a low-mass Class I young stellar object (YSO). These parameters for V900 Mon, another FUor, and a few FUor-like stars are consistent with the idea that FUor outbursts are associated with normal YSOs. The continuum emission is marginally resolved in our observations with a 0.2x0.15 (~300x225 au) beam, and a Gaussian model provides a deconvolved FWHM of ~90 au. The emission is presumably associated with a dusty circumstellar disk, plus a possible contribution from a wind or a wind cavity close to the star. The warm compact nature of the disk continuum emission could be explained with viscous heating of the disk, while gravitational fragmentation in the outer disk and/or a combination of grain growth and their inward drift may also contribute to its compact nature.
We report on the source Gaia 17bpi and identify it as a new, ongoing FU Ori type outburst, associated with a young stellar object. The optical lightcurve from Gaia exhibited a 3.5 mag rise with the source appearing to plateau in mid/late 2018. Mid-infrared observations from NEOWISE also show a $>$3 mag rise that occurred in two stages, with the second one coincident with the optical brightening, and the first one preceding the optical brightening by $sim$1.5 years. We model the outburst as having started between October and December of 2014. This wavelength-dependent aspect of young star accretion-driven outbursts has never been documented before. Both the mid-infrared and the optical colors of the object become bluer as the outburst proceeds. Optical spectroscopic characteristics in the outburst phase include: a GK-type absorption spectrum, strong wind/outflow in e.g. Mgb, NaD, H$alpha$, KI, OI, and CaII profiles, and detection of LiI 6707 AA. The infrared spectrum in the outburst phase is similar to that of an M-type spectrum, notably exhibiting prominent $H_2O$ and $^{12}$CO (2-0) bandhead absorption in the K-band, and likely HeI wind in the Y-band. The new FU Ori source Gaia 17bpi is associated with a little-studied dark cloud in the galactic plane, located at a distance of 1.27 kpc.
66 - P. Abraham , A. Kospal , M. Kun 2017
V582 Aur is an FU Ori-type young eruptive star in outburst since $sim$1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyse the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one occurred in 2012, and one is ongoing since 2016. We collected archival photographic plates, and carried out new optical, infrared, and millimeter wave photometric and spectroscopic observations between 2010 and 2017, with high sampling rate during the current minimum. Beside analysing the color changes during fading, we compiled multiepoch spectral energy distributions, and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04 M$_{odot}$. The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO bandhead in absorption, and exhibit a variable H$alpha$ profile. The color variations strongly indicate that both the $sim$1 year long brightness dip in 2012, and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from $A_V$=4.5 mag to 12.5 mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate and low-mass young stars, orbiting disk structures could be responsible for the eclipses.
352 - E. De Beck , H. Olofsson 2020
W Aql is an asymptotic giant branch (AGB) star with an atmospheric elemental abundance ratio C/O$approx$0.98 and reported circumstellar molecular abundances intermediate between those of M-type (C/O$<$1) and C-type (C/O$>$1) AGB stars. This intermediate status is considered typical for S-type stars, although our understanding of the chemical content of their circumstellar envelopes (CSEs) is currently rather limited. We performed observations in the frequency range 159-268 GHz with the APEX telescope and make abundance estimates through comparison to available spectra towards some well-studied AGB stars and based on rotational diagram analysis in the case of SiC2. We conclude that W Aqls CSE appears considerably closer to that of a C-type AGB star than to that of an M-type AGB star. In particular, we detect emission from C2H, SiC2, SiN, and HC3N, molecules previously only detected towards the CSEs of C-type stars. This conclusion, based on the chemistry of the gaseous component of the CSE, is further supported by reports in the literature on the presence of atmospheric molecular bands and spectral features of dust species typical for C-type AGB stars. Although our observations mainly trace species in the outer regions of the CSE, our conclusion matches closely that based on recent chemical equilibrium models for the inner wind of S-type stars: the atmospheric and circumstellar chemistry of S-type stars likely resembles that of C-type AGB stars much more closely than that of M-type AGB stars. Further observational investigation of the gaseous circumstellar chemistry of S-type stars is required to characterise its dependence on the atmospheric C/O. Non-equilibrium chemical models of the CSEs of AGB stars need to address the particular class of S-type stars and the chemical variety that is induced by the range in atmospheric C/O.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا