No Arabic abstract
The emergence of smart Wi-Fi APs (Access Point), which are equipped with huge storage space, opens a new research area on how to utilize these resources at the edge network to improve users quality of experience (QoE) (e.g., a short startup delay and smooth playback). One important research interest in this area is content prefetching, which predicts and accurately fetches contents ahead of users requests to shift the traffic away during peak periods. However, in practice, the different video watching patterns among users, and the varying network connection status lead to the time-varying server load, which eventually makes the content prefetching problem challenging. To understand this challenge, this paper first performs a large-scale measurement study on users AP connection and TV series watching patterns using real-traces. Then, based on the obtained insights, we formulate the content prefetching problem as a Markov Decision Process (MDP). The objective is to strike a balance between the increased prefetching&storage cost incurred by incorrect prediction and the reduced content download delay because of successful prediction. A learning-based approach is proposed to solve this problem and another three algorithms are adopted as baselines. In particular, first, we investigate the performance lower bound by using a random algorithm, and the upper bound by using an ideal offline approach. Then, we present a heuristic algorithm as another baseline. Finally, we design a reinforcement learning algorithm that is more practical to work in the online manner. Through extensive trace-based experiments, we demonstrate the performance gain of our design. Remarkably, our learning-based algorithm achieves a better precision and hit ratio (e.g., 80%) with about 70% (resp. 50%) cost saving compared to the random (resp. heuristic) algorithm.
We show experimentally that workload-based AP-STA associations can improve system throughput significantly. We present a predictive model that guides optimal resource allocations in dense Wi-Fi networks and achieves 72-77% of the optimal throughput with varying training data set sizes using a 3-day trace of real cable modem traffic.
Most P2P VoD schemes focused on service architectures and overlays optimization without considering segments rarity and the performance of prefetching strategies. As a result, they cannot better support VCRoriented service in heterogeneous environment having clients using free VCR controls. Despite the remarkable popularity in VoD systems, there exist no prior work that studies the performance gap between different prefetching strategies. In this paper, we analyze and understand the performance of different prefetching strategies. Our analytical characterization brings us not only a better understanding of several fundamental tradeoffs in prefetching strategies, but also important insights on the design of P2P VoD system. On the basis of this analysis, we finally proposed a cooperative prefetching strategy called cooching. In this strategy, the requested segments in VCR interactivities are prefetched into session beforehand using the information collected through gossips. We evaluate our strategy through extensive simulations. The results indicate that the proposed strategy outperforms the existing prefetching mechanisms.
Speaker diarization may be difficult to achieve when applied to narrative films, where speakers usually talk in adverse acoustic conditions: background music, sound effects, wide variations in intonation may hide the inter-speaker variability and make audio-based speaker diarization approaches error prone. On the other hand, such fictional movies exhibit strong regularities at the image level, particularly within dialogue scenes. In this paper, we propose to perform speaker diarization within dialogue scenes of TV series by combining the audio and video modalities: speaker diarization is first performed by using each modality, the two resulting partitions of the instance set are then optimally matched, before the remaining instances, corresponding to cases of disagreement between both modalities, are finally processed. The results obtained by applying such a multi-modal approach to fictional films turn out to outperform those obtained by relying on a single modality.
Speaker diarization, usually denoted as the who spoke when task, turns out to be particularly challenging when applied to fictional films, where many characters talk in various acoustic conditions (background music, sound effects...). Despite this acoustic variability , such movies exhibit specific visual patterns in the dialogue scenes. In this paper, we introduce a two-step method to achieve speaker diarization in TV series: a speaker diarization is first performed locally in the scenes detected as dialogues; then, the hypothesized local speakers are merged in a second agglomerative clustering process, with the constraint that speakers locally hypothesized to be distinct must not be assigned to the same cluster. The performances of our approach are compared to those obtained by standard speaker diarization tools applied to the same data.
This paper explores the feasibility of leveraging concepts from deep reinforcement learning (DRL) to enable dynamic resource management in Wi-Fi networks implementing distributed multi-user MIMO (D-MIMO). D-MIMO is a technique by which a set of wireless access points are synchronized and grouped together to jointly serve multiple users simultaneously. This paper addresses two dynamic resource management problems pertaining to D-MIMO Wi-Fi networks: (i) channel assignment of D-MIMO groups, and (ii) deciding how to cluster access points to form D-MIMO groups, in order to maximize user throughput performance. These problems are known to be NP-Hard and only heuristic solutions exist in literature. We construct a DRL framework through which a learning agent interacts with a D-MIMO Wi-Fi network, learns about the network environment, and is successful in converging to policies which address the aforementioned problems. Through extensive simulations and on-line training based on D-MIMO Wi-Fi networks, this paper demonstrates the efficacy of DRL in achieving an improvement of 20% in user throughput performance compared to heuristic solutions, particularly when network conditions are dynamic. This work also showcases the effectiveness of DRL in meeting multiple network objectives simultaneously, for instance, maximizing throughput of users as well as fairness of throughput among them.