Spontaneous Symmetry Breaking in Wormholes Spacetimes with Matter


Abstract in English

When bosonic matter in the form of a complex scalar field is added to Ellis wormholes, the phenomenon of spontaneous symmetry breaking is observed. Symmetric solutions possess full reflection symmetry with respect to the radial coordinate of the two asymptotically flat spacetime regions connected by the wormhole, whereas asymmetric solutions do not possess this symmetry. Depending on the size of the throat, at bifurcation points pairs of asymmetric solutions arise from or merge with the symmetric solutions. These asymmetric solutions are energetically favoured. When the backreaction of the boson field is taken into account, this phenomenon is retained. Moreover, in a certain region of the solution space both symmetric and asymmetric solutions exhibit a transition from single throat to double throat configurations.

Download