Do you want to publish a course? Click here

Orbital selective pairing and superconductivity in iron selenides

224   0   0.0 ( 0 )
 Added by Emilian M. Nica
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

An important challenge in condensed matter physics is understanding iron-based superconductors. Among these systems, the iron selenides hold the record for highest superconducting transition temperature and pose especially striking puzzles regarding the nature of superconductivity. The pairing state of the alkaline iron selenides appears to be of $d$-wave type based on the observation of a resonance mode in neutron scattering, while it seems to be of $s$-wave type from the nodeless gaps observed everywhere on the Fermi surface (FS). Here we propose an orbital-selective pairing state, dubbed $s tau_{3}$, as a natural explanation of these disparate properties. The pairing function, containing a matrix $tau_{3}$ in the basis of $3d$-electron orbitals, does not commute with the kinetic part of the Hamiltonian. This dictates the existence of both intraband and interband pairing terms in the band basis. A spin resonance arises from a $d$-wave-type sign change in the intraband pairing component whereas the quasiparticle excitation is fully gapped on the FS due to an $s$-wave-like form factor associated with the addition in quadrature of the intraband and interband pairing terms. We demonstrate that this pairing state is energetically favored when the electron correlation effects are orbitally selective. More generally, our results illustrate how the multiband nature of correlated electrons affords unusual types of superconducting states, thereby shedding new light not only on the iron-based materials but also on a broad range of other unconventional superconductors such as heavy fermion and organic systems.



rate research

Read More

We present the zero-temperature superconducting (SC) ground states of the two-orbital asymmetric $t-J$ model on a square lattice by means of the auxiliary-boson approach. Besides the two-gap SC phase, we find an orbital selective SC (OSSC) phase, which is simultaneously SC in one orbit and normal in another orbit. The novel OSSC phase is stable only for sufficient asymmetric degree in orbital space and doping concentration. The pairing symmetry of the SC phase is s-wave-like in most doping regime, against the d-wave symmetry of the single-orbital $t-J$ model in a square lattice. The implication of the present scenario on multi-orbital heavy fermion and iron-based superconductors is also discussed.
We study a three-orbital Hubbard model with negative Hund coupling in infinite dimensions, combining dynamical mean-field theory with continuous time quantum Monte Carlo simulations. This model, which is relevant for the description of alkali-doped fullerides, has previously been shown to exhibit a spontaneous orbital selective Mott phase in the vicinity of the superconducting phase. Calculating the pair potential and double occupancy in each orbital, we study the competition between different homogeneous ordered states and determine the corresponding finite temperature phase diagram of the model. We identify two distinct types of spontaneous orbital-selective Mott states and show that an orbital-selective $s$-wave superconducting state with one superconducting and two metallic orbitals is spontaneously realized between the conventional $s$-wave superconducting phase and these two kinds of spontaneously orbital-selective Mott states.
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.
138 - J.-X. Yin , Y. Y. Zhao , Zheng Wu 2020
High-temperature iron-based superconductivity develops in a structure with unusual lattice-orbital geometry, based on a planar layer of Fe atoms with 3d orbitals and tetrahedrally coordinated by anions. Here we elucidate the electronic role of anions in the iron-based superconductors utilizing state-of-the-art scanning tunneling microscopy. By measuring the local electronic structure, we find that As anion in Ba0.4K0.6Fe2As2 has a striking impact on the electron pairing. The superconducting electronic feature can be switched off/on by removing/restoring As atoms on Fe layer at the atomic scale. Our analysis shows that this remarkable atomic switch effect is related to the geometrical cooperation between anion mediated hopping and unconventional pairing interaction. Our results uncover that the local Fe-anion coupling is fundamental for the pairing interaction of iron-based superconductivity, and promise the potential of bottom-up engineering of electron pairing.
In the present study, we explore superconductivity in NdNiO$_2$ and LaNiO$_2$ employing a first-principles derived low-energy model Hamiltonian, consisting of two orbitals: Ni $x^{2}$-$y^{2}$, and an {it axial} orbital. The {it axial} orbital is constructed out of Nd/La $d$, Ni 3$z^{2}$-$r^{2}$ and Ni $s$ characters. Calculation of the superconducting pairing symmetry and pairing eigenvalue of the spin-fluctuation mediated pairing interaction underlines the crucial role of inter-orbital Hubbard interaction in superconductivity, which turns out to be orbital-selective. The axial orbital brings in materials dependence in the problem, making NdNiO$_2$ different from LaNiO$_2$, thereby controlling the inter-orbital Hubbard interaction assisted superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا