Aims: In this paper we present a case study to investigate conditions necessary to detect a characteristic magnetic field substructure embedded in a large-scale field. A helical magnetic field with a surrounding hourglass shaped field is expected from theoretical predictions and self-consistent magnetohydrodynamical (MHD) simulations to be present in the specific case of protostellar outflows. Hence, such an outflow environment is the perfect for our study. Methodes: We present synthetic polarisation maps in the infrared and millimeter regime of protostellar outflows performed with the newly developed RT and polarisation code POLARIS. The code, as the first, includes a self-consistent description of various alignement mechanism like the imperfect Davis-Greenstein (IDG) and the radiative torque (RAT) alignment. We investigate for which effects the grain size distribution, and applied alignement mechanism have. Results: We find that the IDG mechanism cannot produce any measurable polarization degree (< 1 %) whereas RAT alignment produced polarization degrees of a few 1 %. Furthermore, we developed a method to identify the origin of the polarization. We show that the helical magnetic field in the outflow can only be observed close to the outflow axis and at its tip, whereas in the surrounding regions the hourglass field in the foreground dominates the polarization. Furthermore, the polarization degree in the outflow lobe is lower than in the surroundings in agreement with observations. We also find that the orientation of the polarization vector flips around a few 100 micron due to the transition from dichroic extinction to thermal re-emission. Hence, in order to avoid ambiguities when interpreting polarization data, we suggest to observed in the far-infrared and mm regime. Finally, we show that with ALMA it is possible to observe the polarization emerging from protostellar outflows.