Do you want to publish a course? Click here

Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces

44   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We study the complexity of symmetric assembly puzzles: given a collection of simple polygons, can we translate, rotate, and possibly flip them so that their interior-disjoint union is line symmetric? On the negative side, we show that the problem is strongly NP-complete even if the pieces are all polyominos. On the positive side, we show that the problem can be solved in polynomial time if the number of pieces is a fixed constant.



rate research

Read More

We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-completeness and #P-completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.
Motivated by indoor localization by tripwire lasers, we study the problem of cutting a polygon into small-size pieces, using the chords of the polygon. Sever
We prove NP-completeness of Yin-Yang / Shiromaru-Kuromaru pencil-and-paper puzzles. Viewed as a graph partitioning problem, we prove NP-completeness of partitioning a rectangular grid graph into two induced trees (normal Yin-Yang), or into two induced connected subgraphs (Yin-Yang without $2 times 2$ rule), subject to some vertices being pre-assigned to a specific tree/subgraph.
We investigate the problem of drawing graphs in 2D and 3D such that their edges (or only their vertices) can be covered by few lines or planes. We insist on straight-line edges and crossing-free drawings. This problem has many connections to other challenging graph-drawing problems such as small-area or small-volume drawings, layered or track drawings, and drawing graphs with low visual complexity. While some facts about our problem are implicit in previous work, this is the first treatment of the problem in its full generality. Our contribution is as follows. We show lower and upper bounds for the numbers of lines and planes needed for covering drawings of graphs in certain graph classes. In some cases our bounds are asymptotically tight; in some cases we are able to determine exact values. We relate our parameters to standard combinatorial characteristics of graphs (such as the chromatic number, treewidth, maximum degree, or arboricity) and to parameters that have been studied in graph drawing (such as the track number or the number of segments appearing in a drawing). We pay special attention to planar graphs. For example, we show that there are planar graphs that can be drawn in 3-space on a lot fewer lines than in the plane.
We study three covering problems in the plane. Our original motivation for these problems come from trajectory analysis. The first is to decide whether a given set of line segments can be covered by up to four unit-sized, axis-parallel squares. The second is to build a data structure on a trajectory to efficiently answer whether any query subtrajectory is coverable by up to three unit-sized axis-parallel squares. The third problem is to compute a longest subtrajectory of a given trajectory that can be covered by up to two unit-sized axis-parallel squares.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا