No Arabic abstract
We present new observations of the low-mass companion to HD 984 taken with the Gemini Planet Imager as a part of the Gemini Planet Imager Exoplanet Survey campaign. Images of HD 984 B were obtained in the J (1.12--1.3 micron) and H (1.50--1.80 micron) bands. Combined with archival epochs from 2012 and 2014, we fit the first orbit to the companion to find an 18 AU (70 year) orbit with a 68% confidence interval between 14 and 28 AU, an eccentricity of 0.18 with a 68% confidence interval between 0.05 and 0.47, and an inclination of 119 degrees with a 68% confidence interval between 114 degrees and 125 degrees. To address considerable spectral covariance in both spectra, we present a method of splitting the spectra into low and high frequencies to analyze the spectral structure at different spatial frequencies with the proper spectral noise correlation. Using the split spectra, we compare to known spectral types using field brown dwarf and low-mass star spectra and find a best fit match of a field gravity M6.5+/-1.5 spectral type with a corresponding temperature of 2730+120 K. Photometry of the companion yields a luminosity of log(L_bol/L_sun) = -2.88+/-0.07 dex, using DUSTY models. Mass estimates, again from DUSTY models, find an age-dependent mass of 34+/-1 to 95+/-4 M_Jup. These results are consistent with previous measurements of the object.
We present new near-infrared Gemini Planet Imager (GPI) spectroscopy of HD 206893 B, a substellar companion orbiting within the debris disk of its F5V star. The $J$, $H$, $K1$, and $K2$ spectra from GPI demonstrate the extraordinarily red colors of the object, confirming it as the reddest substellar object observed to date. The significant flux increase throughout the infrared presents a challenging atmosphere to model with existing grids. Best-fit values vary from 1200 K to 1800 K for effective temperature and from 3.0 to 5.0 for log($g$), depending on which individual wavelength band is fit and which model suite is applied. The extreme redness of the companion can be partially reconciled by invoking a high-altitude layer of sub-micron dust particles, similar to dereddening approaches applied to the peculiar red field L-dwarf population. However, reconciling the HD 206893 B spectra with even those of the reddest low-gravity L-dwarf spectra still requires the contribution of additional atmospheric dust, potentially due to the debris disk environment in which the companion resides. Orbit fitting from four years of astrometric monitoring is consistent with a $sim$30-year period, orbital inclination of 147$^{circ}$, and semimajor axis of 10 au, well within the estimated disk inner radius of $sim$50 au. As one of very few substellar companions imaged interior to a circumstellar disk, the properties of this system offer important dynamical constraints on companion-disk interaction and provide a benchmark for substellar and planetary atmospheric study.
The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent, while an actual companion planet will remain at fixed separation. By comparing multiple images at different wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over 36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192x192 spatial elements and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric composition and luminosity, which is influenced by their formation mechanism. Using the Gemini Planet Imager, we discovered a planet orbiting the $sim$20 Myr-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water vapor absorption. Modeling of the spectra and photometry yields a luminosity of L/LS=1.6-4.0 x 10-6 and an effective temperature of 600-750 K. For this age and luminosity, hot-start formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the cold- start core accretion process that may have formed Jupiter.
The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of GPI has been tuned for maximum sensitivity to faint planets near bright stars. During first light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-sigma contrast of $10^6$ at 0.75 arcseconds and $10^5$ at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-second exposure with minimal post-processing. Beta Pictoris b is observed at a separation of $434 pm 6$ milli-arcseconds and position angle $211.8 pm 0.5$ deg. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of three improvement in most parameters over previous solutions. The planet orbits at a semi-major axis of $9.0^{+0.8}_{-0.4}$ AU near the 3:2 resonance with the previously-known 6 AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% posterior probability of a transit of the planet in late 2017.
During the first-light run of the Gemini Planet Imager (GPI) we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets spectral energy distributions. When combined with the 3 to 4 um photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.