Do you want to publish a course? Click here

ALMA constraints on star-forming gas in a prototypical z=1.5 clumpy galaxy: the dearth of CO(5-4) emission from UV-bright clumps

91   0   0.0 ( 0 )
 Added by Anna Cibinel
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep ALMA CO(5-4) observations of a main sequence, clumpy galaxy at z=1.5 in the HUDF. Thanks to the ~0.5 resolution of the ALMA data, we can link stellar population properties to the CO(5-4) emission on scales of a few kpc. We detect strong CO(5-4) emission from the nuclear region of the galaxy, consistent with the observed $L_{rm IR}$-$L^{prime}_{rm CO(5-4)}$ correlation and indicating on-going nuclear star formation. The CO(5-4) gas component appears more concentrated than other star formation tracers or the dust distribution in this galaxy. We discuss possible implications of this difference in terms of star formation efficiency and mass build-up at the galaxy centre. Conversely, we do not detect any CO(5-4) emission from the UV-bright clumps. This might imply that clumps have a high star formation efficiency (although they do not display unusually high specific star formation rates) and are not entirely gas dominated, with gas fractions no larger than that of their host galaxy (~50%). Stellar feedback and disk instability torques funnelling gas towards the galaxy centre could contribute to the relatively low gas content. Alternatively, clumps could fall in a more standard star formation efficiency regime if their actual star-formation rates are lower than generally assumed. We find that clump star-formation rates derived with several different, plausible methods can vary by up to an order of magnitude. The lowest estimates would be compatible with a CO(5-4) non-detection even for main-sequence like values of star formation efficiency and gas content.



rate research

Read More

Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed clumps in distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed clumps in the literature. This sample contains 3193 clumps detected from 1270 galaxies at $0.5 leq z < 3.0$. The clumps are detected from rest-frame UV images, as described in our previous paper. Their physical properties, e.g., rest-frame color, stellar mass (M*), star formation rate (SFR), age, and dust extinction, are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U-V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semi-major axis of galaxies) changes with redshift and M* of the host galaxies: at a fixed M*, the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with M*. Based on our SED-fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B-V) gradient, and a positive specific star formation rate gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. [Abridged]
165 - D. Schaerer , F. Boone , T. Jones 2015
Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the Plateau de Bure Interferometer (PdBI), we have studied a strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the main coolants of the ISM. [CII] emission from the southern part of this galaxy is detected at 10 $sigma$. Taking into account strong gravitational lensing, which provides a magnification of $mu=49$, the intrinsic lensing-corrected [CII]158 micron luminosity is $L(CII)=1.2 times 10^8 L_odot$. The observed ratio of [CII]-to-IR emission, $L(CII)/L(FIR) approx (1.2-2.4) times 10^{-3}$, is found to be similar to that in nearby galaxies. The same also holds for the observed ratio $L(CII)/L(CO)=2.3 times 10^3$, which is comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at low redshift. We utilize strong gravitational lensing to extend diagnostic studies of the cold ISM to an order of magnitude lower luminosity ($L(IR) sim (1.1-1.3) times 10^{11} L_odot$) and SFR than previous work at high redshift. While larger samples are needed, our results provide evidence that the cold ISM of typical high redshift galaxies has physical characteristics similar to normal star forming galaxies in the local Universe.
We present first results from the SXDF-ALMA 1.5 arcmin^2 deep survey at 1.1 mm using Atacama Large Millimeter Array (ALMA). The map reaches a 1sigma depth of 55 uJy/beam and covers 12 Halpha-selected star-forming galaxies at z = 2.19 or z=2.53. We have detected continuum emission from three of our Halpha-selected sample, including one compact star-forming galaxy with high stellar surface density, NB2315-07. They are all red in the rest-frame optical and have stellar masses of log (M*/Msun)>10.9 whereas the other blue, main-sequence galaxies with log(M*/Msun)=10.0-10.8 are exceedingly faint, <290 uJy (2sigma upper limit). We also find the 1.1 mm-brightest galaxy, NB2315-02, to be associated with a compact (R_e=0.7+-0.1 kpc), dusty star-forming component. Given high gas fraction (44^{+20}_{-8}% or 37^{+25}_{-3}%) and high star formation rate surface density (126^{+27}_{-30} Msun yr^{-1}kpc^{-2}), the concentrated starburst can within less than 50^{+12}_{-11} Myr build up a stellar surface density matching that of massive compact galaxies at z~2, provided at least 19+-3% of the total gas is converted into stars in the galaxy centre. On the other hand, NB2315-07, which already has such a high stellar surface density core, shows a gas fraction (23+-8%) and is located in the lower envelope of the star formation main-sequence. This compact less star-forming galaxy is likely to be in an intermediate phase between compact dusty star-forming and quiescent galaxies.
We present high spatial resolution (FWHM$sim$0.14) observations of the CO($8-7$) line in GDS-14876, a compact star-forming galaxy at $z=2.3$ with total stellar mass of $log(M_{star}/M_{odot})=10.9$. The spatially resolved velocity map of the inner $rlesssim1$~kpc reveals a continous velocity gradient consistent with the kinematics of a rotating disk with $v_{rm rot}(r=1rm kpc)=163pm5$ km s$^{-1}$ and $v_{rm rot}/sigmasim2.5$. The gas-to-stellar ratios estimated from CO($8-7$) and the dust continuum emission span a broad range, $f^{rm CO}_{rm gas}=M_{rm gas}/M_{star}=13-45%$ and $f^{rm cont}_{rm gas}=50-67%$, but are nonetheless consistent given the uncertainties in the conversion factors. The dynamical modeling yields a dynamical mass of$log(M_{rm dyn}/M_{odot})=10.58^{+0.5}_{-0.2}$ which is lower, but still consistent with the baryonic mass, $log$(M$_{rm bar}$= M$_{star}$ + M$^{rm CO}_{rm gas}$/M$_{odot}$)$=11.0$, if the smallest CO-based gas fraction is assumed. Despite a low, overall gas fraction, the small physical extent of the dense, star-forming gas probed by CO($8-7$), $sim3times$ smaller than the stellar size, implies a strong concentration that increases the gas fraction up to $f^{rm CO, 1rm kpc}_{rm gas}sim 85%$ in the central 1 kpc. Such a gas-rich center, coupled with a high star-formation rate, SFR$sim$ 500 M$_{odot}$ yr$^{-1}$, suggests that GDS-14876 is quickly assembling a dense stellar component (bulge) in a strong nuclear starburst. Assuming its gas reservoir is depleted without replenishment, GDS-14876 will quickly ($t_{rm depl}sim27$ Myr) become a compact quiescent galaxy that could retain some fraction of the observed rotational support.
The rest-frame UV-optical (i.e., NUV-B) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV-B color gradients in ~1400 large ($rm r_e>0.18^{primeprime}$), nearly face-on (b/a>0.5) main-sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV-optical color gradients in the SFGs at z~1 and discuss their link with the buildup of stellar mass. We find that the more massive, centrally compact, and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than the less massive, centrally diffuse, and less dusty SFGs. After correcting for dust reddening based on optical-SED fitting, the color gradients in the low-mass ($M_{ast} <10^{10}M_{odot}$) SFGs generally become quite flat, while most of the high-mass ($M_{ast} > 10^{10.5}M_{odot}$) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal cause of negative color gradients in the low-mass SFGs, while both increased central dust reddening and buildup of compact old bulges are likely the origins of negative color gradients in the high-mass SFGs. These findings also imply that at these redshifts the low-mass SFGs buildup their stellar masses in a self-similar way, while the high-mass SFGs grow inside out.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا