No Arabic abstract
We present an underground long baseline atom interferometer to study gravity at large scale. The hybrid atom-laser antenna will use several atom interferometers simultaneously interrogated by the resonant mode of an optical cavity. The instrument will be a demonstrator for gravitational wave detection in a frequency band (100 mHz - 1 Hz) not explored by classical ground and space-based observatories, and interesting for potential astrophysical sources. In the initial instrument configuration, standard atom interferometry techniques will be adopted, which will bring to a peak strain sensitivity of 2$cdot 10^{-13}/sqrt{mathrm{Hz}}$ at 2 Hz. The experiment will be realized at the underground facility of the Laboratoire Souterrain `a Bas Bruit (LSBB) in Rustrel--France, an exceptional site located away from major anthropogenic disturbances and showing very low background noise. In the following, we present the measurement principle of an in-cavity atom interferometer, derive signal extraction for Gravitational Wave measurement from the antenna and determine the expected strain sensitivity. We then detail the functioning of the different systems of the antenna and describe the properties of the installation site.
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain `{a} Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.
We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of $3.3 times 10^{-22}/sqrt{text{Hz}}$ at 1.7 Hz. In this paper we detail the main technological bricks of this large scale detector and emphasis the research pathways to be conducted for its realization. We discuss the site options, atom optics, and source requirements needed to reach the target sensitivity. We then discuss required seismic isolation techniques, Gravity Gradient Noise reduction strategies, and the metrology of various noise couplings to the detector.
We propose a very long baseline atom interferometer test of Einsteins equivalence principle (EEP) with ytterbium and rubidium extending over 10m of free fall. In view of existing parametrizations of EEP violations, this choice of test masses significantly broadens the scope of atom interferometric EEP tests with respect to other performed or proposed tests by comparing two elements with high atomic numbers. In a first step, our experimental scheme will allow reaching an accuracy in the Eotvos ratio of $7times 10^{-13}$. This achievement will constrain violation scenarios beyond our present knowledge and will represent an important milestone for exploring a variety of schemes for further improvements of the tests as outlined in the paper. We will discuss the technical realisation in the new infrastructure of the Hanover Institute of Technology (HITec) and give a short overview of the requirements to reach this accuracy. The experiment will demonstrate a variety of techniques which will be employed in future tests of EEP, high accuracy gravimetry and gravity-gradiometry. It includes operation of a force sensitive atom interferometer with an alkaline earth like element in free fall, beam splitting over macroscopic distances and novel source concepts.
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$times10^{-9}g/sqrt{Hz}$ over a 70 cm baseline or 3.0$times10^{-9}g/sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$times10^{-4}$ that is competitive with the present limit of 1.2$times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.
Using the technique of point source atom interferometry, we characterize the sensitivity of a multi-axis gyroscope based on free-space Raman interrogation of a single source of cold atoms in a glass vacuum cell. The instrument simultaneously measures the acceleration in the direction of the Raman laser beams and the component of the rotation vector in the plane perpendicular to that direction. We characterize the sensitivities for the magnitude and direction of the rotation vector measurement, which are 0.033 $^{circ}/mathrm{s}$ and 0.27 $^{circ}$ with one second averaging time, respectively. The sensitivity could be improved by increasing the Raman interrogation time, allowing the cold-atom cloud to expand further, correcting the fluctuations in the initial cloud shape, and reducing sources of technical noise. The unique ability of the PSI technique to measure the rotation vector in a plane may permit applications of atom interferometry such as tracking the precession of a rotation vector and gyrocompassing.