Do you want to publish a course? Click here

Cepheids with the eyes of photometric space telescopes

88   0   0.0 ( 0 )
 Added by Laszlo Molnar
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Space photometric missions have been steadily accumulating observations of Cepheids in recent years, leading to a flow of new discoveries. In this short review we summarize the findings provided by the early missions such as WIRE, MOST, and CoRoT, and the recent results of the Kepler and K2 missions. The surprising and fascinating results from the high-precision, quasi-continuous data include the detection of the amplitude increase of Polaris, and exquisite details about V1154 Cyg within the original Kepler field of view. We also briefly discuss the current opportunities with the K2 mission, and the prospects of the TESS space telescope regarding Cepheids.



rate research

Read More

118 - L. Molnar 2018
Continuous, high-precision photometry from space revolutionized many fields of stellar astrophysics, and that extends to the well-studied families of RR Lyrae and Cepheid variable stars as well. After the pioneering work of MOST, the CoRoT and Kepler missions released an avalanche of discoveries. We found signals that needed exquisite precision, such as an abundance of additional modes and granulation. Other discoveries, like period doubling, simply needed us to break away from the day-night cycle of the Earth. And the future holds more possibilities, with the BRITE, K2, and Gaia missions at full swing; TESS, taking physical shape; and PLATO securing mission adoption. Here I summarize some of these discoveries and the expectations from future missions.
A few Galactic classical Cepheids were observed in the programmes of space missions as Coriolis, MOST and Kepler. An appealing opportunity was to detect additional nonradial modes, thus opening the possibility to perform asteroseismic studies and making the pulsational content of Galactic Cepheids more similar to that of Magellanic Clouds ones. However, only hints of cycle-to-cycle variations were found, without any strict periodicity. In this context the potential of the CoRoT exoplanetary data base was not fully exploited despite the wide area covered on the Galactic plane. Therefore, we investigated all the candidate Cepheids pointed out by the automatic classification of the CoRoT curves. At the end we could identify seven bona-fide Cepheids. The light curves were investigated to remove some instrumental effects. The frequency analysis was particularly delicate since these small effects can be enhanced by the large amplitude, resulting in the presence of significant, but spurious, peaks in the power spectrum. Indeed, the careful evaluation of a very attracting peak in the spectra of CoRoT 0102618121, allowed us to certify its spurious origin. Once that the instrumental effects were properly removed, no additional mode was detected. On the other hand, cycle-to-cycle variations of the Fourier parameters were observed, but very small and always within 3 sigma. Among the seven Cepheids, there are two Pop. I first-overtone pulsators, four Pop. I fundamental mode pulsators, and one Pop. II star. The CoRoT colours allowed us to measure that times of maximum brightness occur a little earlier (about 0.01 period) at short wavelengths than at long ones.
We present a new extended and detailed set of models for Classical Cepheid pulsators at solar chemical composition ($Z=0.02$, $Y=0.28$) based on a well tested nonlinear hydrodynamical approach. In order to model the possible dependence on crucial assumptions such as the Mass-Luminosity relation of central Helium burning intermediate-mass stars or the efficiency of superadiabatic convection, the model set was computed by varying not only the pulsation mode and the stellar mass but also the Mass-Luminosity relation and the mixing length parameter that is used to close the system of nonlinear hydrodynamical and convective equations. The dependence of the predicted boundaries of the instability strip as well as of both light and radial velocity curves on the assumed Mass-Luminosity and the efficiency of superadiabatic convection is discussed. Nonlinear Period-Mass-Luminosity-Temperature, Period-Radius and Period-Mass-Radius relations are also computed. The theoretical atlas of bolometric light curves for both the fundamental and first overtone mode has been converted in the Gaia filters $G$, $G_{BP}$ and $G_{BR}$ and the corresponding mean magnitudes have been derived. Finally the first theoretical Period-Luminosity-Color and Period-Wesenheit relations in the Gaia filters are provided and the resulting theoretical parallaxes are compared with Gaia Data Release 2 results for both fundamental and first overtone Galactic Cepheids.
We present a photometric study of M13 multiple stellar populations over a wide field of view, covering approximately 6.5 half-light radii, using archival Isaac Newton Telescope observations to build an accurate multi-band Stromgren catalogue. The use of the Stromgren index $c_{y}$ permits us to separate the multiple populations of M13 on the basis of their position on the red giant branch. The comparison with medium and high resolution spectroscopic analysis confirms the robustness of our selection criterion. To determine the radial distribution of stars in M13, we complemented our dataset with Hubble Space Telescope observations of the cluster core, to compensate for the effect of incompleteness affecting the most crowded regions. From the analysis of the radial distributions we do not find any significant evidence of spatial segregation. Some residuals may be present in the external regions where we observe only a small number of stars. This finding is compatible with the short dynamical timescale of M13 and represents, to date, one of the few examples of fully spatially mixed multiple populations in a massive globular cluster.
168 - Emese Plachy 2017
Cepheid stars are crucial objects for a variety of topics that range from stellar pulsation and the evolution of intermediate-mass stars to the understanding the structure of the Galaxy and the Universe through the distance measurements they provide. The developments in hydrodynamical calculations, the release of large ground-based surveys, and the advent of continuous, space-based photometry revealed many puzzling phenomena about these stars in the last few years. In this paper I collected some important and new results in the topics of distance measurements and binarity investigations. I also summarize the most recent discoveries in their light variations, such as period doubling, modulation, low-amplitude additional modes, period jitter and the signs of granulation, and discuss the new opportunities that current and future space missions will offer for us.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا