High-Resolution Laser Spectroscopy of Long-Lived Plutonium Isotopes


Abstract in English

Long-lived isotopes of plutonium were studied using two complementary techniques, high-resolution resonance ionisation spectroscopy (HR-RIS) and collinear laser spectroscopy (CLS). Isotope shifts have been measured on the $5f^67s^2 ^7F_0 rightarrow 5f^56d^27s (J=1)$ and $5f^67s^2 ^7F_1 rightarrow 5f^67s7p (J=2)$ atomic transitions using the HR-RIS method and the hyperfine factors have been extracted for the odd mass nuclei $^{239,241}$Pu. Collinear laser spectroscopy was performed on the $5f^67s ^8F_{1/2} rightarrow J=1/2; (27523.61text{cm}^{-1})$ ionic transition with the hyperfine $A$ factors measured for $^{239}$Pu. Changes in mean-squared charge radii have been extracted and show a good agreement with previous non-optical methods, with an uncertainty improvement by approximately one order of magnitude. Plutonium represents the heaviest element studied to date using collinear laser spectroscopy.

Download