Do you want to publish a course? Click here

Approximation algorithms for TSP with neighborhoods in the plane

176   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In the Euclidean TSP with neighborhoods (TSPN), we are given a collection of n regions (neighborhoods) and we seek a shortest tour that visits each region. As a generalization of the classical Euclidean TSP, TSPN is also NP-hard. In this paper, we present new approximation results for the TSPN, including (1) a constant-factor approximation algorithm for the case of arbitrary connected neighborhoods having comparable diameters; and (2) a PTAS for the important special case of disjoint unit disk neighborhoods (or nearly disjoint, nearly-unit disks). Our methods also yield improved approximation ratios for various special classes of neighborhoods, which have previously been studied. Further, we give a linear-time O(1)-approximation algorithm for the case of neighborhoods that are (infinite) straight lines.



rate research

Read More

The Euclidean TSP with neighborhoods (TSPN) problem seeks a shortest tour that visits a given collection of $n$ regions ({em neighborhoods}). We present the first polynomial-time approximation scheme for TSPN for a set of regions given by arbitrary disjoint fat regions in the plane. This improves substantially upon the known approximation algorithms, and is the first PTAS for TSPN on regions of non-comparable sizes. Our result is based on a novel extension of the $m$-guillotine method. The result applies to regions that are fat in a very weak sense: each region $P_i$ has area $Omega([diam(P_i)]^2)$, but is otherwise arbitrary.
Given two sets $S$ and $T$ of points in the plane, of total size $n$, a {many-to-many} matching between $S$ and $T$ is a set of pairs $(p,q)$ such that $pin S$, $qin T$ and for each $rin Scup T$, $r$ appears in at least one such pair. The {cost of a pair} $(p,q)$ is the (Euclidean) distance between $p$ and $q$. In the {minimum-cost many-to-many matching} problem, the goal is to compute a many-to-many matching such that the sum of the costs of the pairs is minimized. This problem is a restricted version of minimum-weight edge cover in a bipartite graph, and hence can be solved in $O(n^3)$ time. In a more restricted setting where all the points are on a line, the problem can be solved in $O(nlog n)$ time [Colannino, Damian, Hurtado, Langerman, Meijer, Ramaswami, Souvaine, Toussaint; Graphs Comb., 2007]. However, no progress has been made in the general planar case in improving the cubic time bound. In this paper, we obtain an $O(n^2cdot poly(log n))$ time exact algorithm and an $O( n^{3/2}cdot poly(log n))$ time $(1+epsilon)$-approximation in the planar case. Our results affirmatively address an open problem posed in [Colannino et al., Graphs Comb., 2007].
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwal and Pan [SoCG 2014] gave a randomized $O(nlog^4 n)$-time, $O(1)$-approximation algorithm, by using variants of the multiplicative weight update (MWU) method combined with geometric data structures. We simplify the data structure requirement in one of their methods and obtain a deterministic $O(nlog^3 nloglog n)$-time algorithm. With further new ideas, we obtain a still faster randomized $O(nlog n(loglog n)^{O(1)})$-time algorithm. For the weighted problem, we also give a randomized $O(nlog^4nloglog n)$-time, $O(1)$-approximation algorithm, by simple modifications to the MWU method and the quasi-uniform sampling technique.
Given $n$ points in a $d$ dimensional Euclidean space, the Minimum Enclosing Ball (MEB) problem is to find the ball with the smallest radius which contains all $n$ points. We give a $O(ndQcal/sqrt{epsilon})$ approximation algorithm for producing an enclosing ball whose radius is at most $epsilon$ away from the optimum (where $Qcal$ is an upper bound on the norm of the points). This improves existing results using emph{coresets}, which yield a $O(nd/epsilon)$ greedy algorithm. Finding the Minimum Enclosing Convex Polytope (MECP) is a related problem wherein a convex polytope of a fixed shape is given and the aim is to find the smallest magnification of the polytope which encloses the given points. For this problem we present a $O(mndQcal/epsilon)$ approximation algorithm, where $m$ is the number of faces of the polytope. Our algorithms borrow heavily from convex duality and recently developed techniques in non-smooth optimization, and are in contrast with existing methods which rely on geometric arguments. In particular, we specialize the excessive gap framework of citet{Nesterov05a} to obtain our results.
91 - Samantha Chen , Yusu Wang 2021
Recent years have witnessed a tremendous growth using topological summaries, especially the persistence diagrams (encoding the so-called persistent homology) for analyzing complex shapes. Intuitively, persistent homology maps a potentially complex input object (be it a graph, an image, or a point set and so on) to a unified type of feature summary, called the persistence diagrams. One can then carry out downstream data analysis tasks using such persistence diagram representations. A key problem is to compute the distance between two persistence diagrams efficiently. In particular, a persistence diagram is essentially a multiset of points in the plane, and one popular distance is the so-called 1-Wasserstein distance between persistence diagrams. In this paper, we present two algorithms to approximate the 1-Wasserstein distance for persistence diagrams in near-linear time. These algorithms primarily follow the same ideas as two existing algorithms to approximate optimal transport between two finite point-sets in Euclidean spaces via randomly shifted quadtrees. We show how these algorithms can be effectively adapted for the case of persistence diagrams. Our algorithms are much more efficient than previous exact and approximate algorithms, both in theory and in practice, and we demonstrate its efficiency via extensive experiments. They are conceptually simple and easy to implement, and the code is publicly available in github.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا