Do you want to publish a course? Click here

Physics Behind Precision

74   0   0.0 ( 0 )
 Added by Patrizia Azzi
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

This document provides a writeup of contributions to the FCC-ee mini-workshop on Physics behind precision held at CERN, on 2-3 February 2016.



rate research

Read More

79 - Sibo Zheng 2019
We propose a novel approach of probing grand unification through precise measurements on the Higgs Yukawa couplings at the LHC. This idea is well motivated by the appearance of effective operators not suppressed by the mass scale of unification $M_{rm{U}}$ in realistic models of unification with the minimal structure of Yukawa sector. Such operators modify the Higgs Yukawa couplings in correlated patterns at scale $M_{rm{U}}$ that hold up to higher-order corrections. The coherences reveal a feature that, the deviation of tau Yukawa coupling relative to its standard model value at the weak scale is the largest one among the third-generation Yukawa couplings. This feature, if verified by the future LHC, can serve as a hint of unification.
73 - Antonio Pich 2020
The inclusive production of hadrons through electroweak currents can be rigorously analysed with short-distance theoretical tools. The associated observables are insensitive to the involved infrared behaviour of the strong interaction, allowing for very precise tests of Quantum Chromodynamics. The theoretical predictions for $sigma(e^+e^-tomathrm{hadrons})$ and the hadronic decay widths of the $tau$ lepton and the $Z$, $W$ and Higgs bosons have reached an impressive accuracy of $mathcal{O}(alpha_s^4)$. Precise experimental measurements of the $Z$ and $tau$ hadronic widths have made possible the accurate determination of the strong coupling at two very different energy scales, providing a highly significant experimental verification of asymptotic freedom. A detailed discussion of the theoretical description of these processes and their current phenomenological status is presented. The most precise determinations of $alpha_s$ from other sources are also briefly reviewed and compared with the fully-inclusive results.
We study the constraints imposed by perturbative unitarity on the new physics interpretation of the muon $g-2$ anomaly. Within a Standard Model Effective Field Theory (SMEFT) approach, we find that scattering amplitudes sourced by effective operators saturate perturbative unitarity at about 1 PeV. This corresponds to the highest energy scale that needs to be probed in order to resolve the new physics origin of the muon $g-2$ anomaly. On the other hand, simplified models (e.g.~scalar-fermion Yukawa theories) in which renormalizable couplings are pushed to the boundary of perturbativity still imply new on-shell states below 200 TeV. We finally suggest that the highest new physics scale responsible for the anomalous effect can be reached in non-renormalizable models at the PeV scale.
We carry out a state-of-the-art assessment of long baseline neutrino oscillation experiments with wide band beams. We describe the feasibility of an experimental program using existing high energy accelerator facilities, a new intense wide band neutrino beam (0-6 GeV) and a proposed large detector in a deep underground laboratory. We find that a decade-long program with 1 MW operation in the neutrino mode and 2 MW operation in the antineutrino mode, a baseline as long as the distance between Fermilab and the Homestake mine (1300 km) or the Henderson mine (1500 km), and a water Cherenkov detector with fiducial mass of about 300 kT has optimum sensitivity to theta_{13}, the mass hierarchy and to neutrino CP violation at the 3sigma C.L. for sin^22theta_{13}>0.008. This program is capable of breaking the eight-fold degeneracy down to the octant degeneracy without additional external input.
The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muons anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $mu_mu / mu_p$, lepton mass ratio $m_{mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا