Fully-coherent all-sky search for gravitational wave (GW) signals from the coalescence of compact object binaries is a computationally expensive task. Approximations, such as semi-coherent coincidence searches, are currently used to circumvent the computational barrier with a concomitant loss in sensitivity. We explore the effectiveness of Particle Swarm Optimization (PSO) in addressing this problem. Our results, using a simulated network of detectors with initial LIGO design sensitivities and a realistic signal strength, show that PSO can successfully deliver a fully-coherent all-sky search with < 1/10 the number of likelihood evaluations needed for a grid-based search.