No Arabic abstract
We report on a numerical study of the Boltzmann equation including $2leftrightarrow 2$ scatterings of gluons and quarks in an overoccupied Glasma undergoing longitudinal expansion. We find that when a cascade of gluon number to the infrared occurs, corresponding to an infrared enhancement analogous to a transient Bose-Einstein condensate, gluon distributions qualitatively reproduce the results of classical-statistical simulations for the expanding Glasma. These include key features of the distributions that are not anticipated in the bottom-up thermalization scenario. We also find that quark distributions, like those of gluons, satisfy self-similar scaling distributions in the overoccupied Glasma. We discuss the implications of these results for a deeper understanding of the self-similarity and universality of parton distributions in the Glasma.
A homogeneous color magnetic field is known to be unstable for the fluctuations perpendicular to the field in the color space (the Nielsen-Olesen instability). We argue that these unstable modes, exponentially growing, generate an azimuthal magnetic field with the original field being in the z-direction, which causes the Nielsen-Olesen instability for another type of fluctuations. The growth rate of the latter unstable mode increases with the momentum p_z and can become larger than the formers growth rate which decreases with increasing p_z. These features may explain the interplay between the primary and secondary instabilities observed in the real-time simulation of a non-expanding glasma, i.e., stochastically generated anisotropic Yang-Mills fields without expansion.
We develop a macroscopic description of the space-time evolution of the energy-momentum tensor during the pre-equilibrium stage of a high-energy heavy-ion collision. Based on a weak coupling effective kinetic description of the microscopic equilibration process (`a la bottom-up), we calculate the non-equilibrium evolution of the local background energy-momentum tensor as well as the non-equilibrium linear response to transverse energy and momentum perturbations for realistic boost-invariant initial conditions for heavy ion collisions. We demonstrate how this framework can be used on an event-by-event basis to propagate the energy momentum tensor from far-from-equilibrium initial state models, e.g. IP-Glasma, to the time $tau_text{hydro}$ when the system is well described by relativistic viscous hydrodynamics. The subsequent hydrodynamic evolution becomes essentially independent of the hydrodynamic initialization time $tau_text{hydro}$ as long as $tau_text{hydro}$ is chosen in an appropriate range where both kinetic and hydrodynamic descriptions overlap. We find that for $sqrt{s_{NN}}=2.76,text{TeV}$ central Pb-Pb collisions, the typical time scale when viscous hydrodynamics with shear viscosity over entropy ratio $eta/s=0.16$ becomes applicable is $tau_text{hydro}sim 1,text{fm/c}$ after the collision.
We study the spectral properties of an overoccupied gluonic system far from equilibrium. Using classical Yang-Mills simulations and linear response theory, we determine the statistical and spectral functions. We measure dispersion relations and damping rates of transversally and longitudinally polarized excitations in the gluonic plasma, and also study further structures in the spectral function.
Axial charge production at the early stage of heavy-ion collisions is investigated within the framework of real-time lattice simulations at leading order in QCD coupling. Starting from color glass condensate initial conditions, the time evolution of quantum quark fields under classical color gauge fields is computed on a lattice in longitudinally expanding geometry. We consider simple color charge distributions in Lorentz contracted nuclei that realize flux tube-like configurations of color fields carrying nonzero topological charge after a collision. By employing the Wilson fermion extended to the longitudinally expanding geometry, we demonstrate the realization of the axial anomaly on the real-time lattice.
In Phys. Rev. Lett. 114 (2015) 6, 061601, we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and $N$-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of a Bose-Einstein Condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-$N$ expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.