Do you want to publish a course? Click here

Evidence that particle acceleration in hotspots of FR II galaxies is not constrained by synchrotron cooling

136   0   0.0 ( 0 )
 Added by Anabella Araudo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the hotspots of powerful radiogalaxies, where electrons accelerated at the jet termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ~TeV for a canonical magnetic field of ~100 micro Gauss. We show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed at radio, infrared and optical wavelengths.



rate research

Read More

It has been suggested that relativistic shocks in extragalactic sources may accelerate the highest energy cosmic rays. The maximum energy to which cosmic rays can be accelerated depends on the structure of magnetic turbulence near the shock but recent theoretical advances indicate that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV. We study the hotspots of powerful radiogalaxies, where electrons accelerated at the termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is < TeV for a canonical magnetic field of ~100 micro Gauss. Based on theoretical considerations we show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed with high spatial resolution at radio, infrared and optical wavelengths.
It has been suggested that relativistic shocks in extragalactic sources may accelerate the most energetic cosmic rays. However, recent theoretical advances indicating that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV cast doubt on this. In the present contribution we model the radio to X-ray emission in the southern hotspot of the quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the downstream magnetic field as expected for small scale turbulence. If our result is confirmed by analyses of other radiogalaxies, it provides firm observational evidence that relativistic shocks at the termination region of powerful jets in FR II radiogalaxies do not accelerate ultra high energy cosmic rays.
We present a systematic analysis of the extended X-ray emission discovered around 35 FR II radio galaxies from the revised Third Cambridge catalog (3CR) Chandra Snapshot Survey with redshifts between 0.05 to 0.9. We aimed to (i) test for the presence of extended X-ray emission around FR II radio galaxies, (ii) investigate if the extended emission origin is due to Inverse Compton scattering of seed photons arising from the Cosmic Microwave Background (IC/CMB) or to thermal emission from an intracluster medium (ICM) and (iii) test the impact of this extended emission on hotspot detection. We investigated the nature of the extended X-ray emission by studying its morphology and compared our results with low-frequency radio observations (i.e., $sim$150 MHz), in the TGSS and LOFAR archives, as well as with optical images from Pan-STARRS. In addition, we optimized a search for X-ray counterparts of hotspots in 3CR FR II radio galaxies. We found statistically significant extended emission ($>$3$sigma$ confidence level) along the radio axis for $sim$90%, and in the perpendicular direction for $sim$60% of our sample. We confirmed the detection of 7 hotspots in the 0.5 - 3 keV. In the cases where the emission in the direction perpendicular to the radio axis is comparable to that along the radio axis, we suggest that the underlying radiative process is thermal emission from ICM. Otherwise, the dominant radiative process is likely non-thermal IC/CMB emission from lobes. We found that non-thermal IC/CMB is the dominant process in $sim$70% of the sources in our sample, while thermal emission from the ICM dominates in $sim$15% of them.
143 - G. Migliori 2020
The acceleration and radiative processes active in low-power radio hotspots are investigated by means of new deep near-infrared (NIR) and optical VLT observations, complemented with archival, high-sensitivity VLT, radio VLA and X-ray Chandra data. For the three studied radio galaxies (3C 105, 3C 195 and 3C 227), we confirm the detection of NIR/optical counterparts of the observed radio hotspots. We resolve multiple components in 3C 227 West and in 3C 105 South and characterize the diffuse NIR/optical emission of the latter. We show that the linear size of this component ($gtrsim$4 kpc) makes 3C 105 South a compelling case for particles re-acceleration in the post-shock region. Modeling of the radio-to-X-ray spectral energy distribution (SED) of 3C 195 South and 3C 227 W1 gives clues on the origin of the detected X-ray emission. In the context of inverse Compton models, the peculiarly steep synchrotron curve of 3C 195 South sets constraints on the shape of the radiating particles spectrum that are testable with better knowledge of the SED shape at low ($lesssim$GHz) radio frequencies and in X-rays. The X-ray emission of 3C 227 W1 can be explained with an additional synchrotron component originating in compact ($<$100 pc) regions, such those revealed by radio observations at 22 GHz, provided that efficient particle acceleration ($gammagtrsim$10$^7$) is ongoing. The emerging picture is that of systems in which different acceleration and radiative processes coexist.
122 - R. A. Laing 2007
We describe very accurate imaging of radio spectral index for the inner jets in three FR I radio galaxies. Where the jets first brighten, there is a remarkably small dispersion around a spectral index of 0.62. This is also the region where bright X-ray emission is detected. Further from the nucleus, the spectral index flattens slightly to 0.50 - 0.55 and X-ray emission, although still detectable, is fainter relative to the radio. The brightest X-ray emission from the jets is therefore not associated with the flattest radio spectra, but rather with some particle-acceleration process whose characteristic energy index is 2.24. The change in spectral index occurs roughly where our relativistic jet models require rapid deceleration. Flatter-spectrum edges can be seen where the jets are isolated from significant surrounding diffuse emission and we suggest that these are associated with shear.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا