Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate $gamma$-Li$_2$IrO$_3$


Abstract in English

Honeycomb iridates such as $gamma$-Li$_2$IrO$_3$ are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin liquid ground state, in $gamma$-Li$_2$IrO$_3$ it has been shown that the balance of magnetic interactions leads to the incommensurate spiral spin order at ambient pressure below 38 K. We study the fragility of this state in single crystals of $gamma$-Li$_2$IrO$_3$ using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3.0 GPa. RXS is a direct probe of the underlying electronic order, and we observe the abrupt disappearance of the $q$=(0.57, 0, 0) spiral order at a critical pressure $P_c = 1.5 $GPa with no accompanying change in the symmetry of the lattice. This dramatic disappearance is in stark contrast with recent studies of $beta$-Li$_2$IrO$_3$ that show continuous suppression of the spiral order in magnetic field; under pressure, a new and possibly nonmagnetic ground state emerges.

Download