Do you want to publish a course? Click here

Hadron Resonance Gas Model with Induced Surface Tension

62   0   0.0 ( 0 )
 Added by Aleksei Ivanytskyi
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Here we present a physically transparent generalization of the multicomponent Van der Waals equation of state in the grand canonical ensemble. For the one-component case the third and fourth virial coefficients are calculated analytically. It is shown that an adjustment of a single model parameter allows us to reproduce the third and fourth virial coefficients of the gas of hard spheres with small deviations from their exact values. A thorough comparison of the compressibility factor and speed of sound of the developed model with the one and two component Carnahan-Starling equation of state is made. It is shown that the model with the induced surface tension is able to reproduce the results of the Carnahan-Starling equation of state up to the packing fractions 0.2-0.22 at which the usual Van der Waals equation of state is inapplicable. At higher packing fractions the developed equation of state is softer than the gas of hard spheres and, hence, it breaks causality in the domain where the hadronic description is expected to be inapplicable. Using this equation of state we develop an entirely new hadron resonance gas model and apply it to a description of the hadron yield ratios measured at AGS, SPS, RHIC and ALICE energies of nuclear collisions. The achieved quality of the fit per degree of freedom is about 1.08. We confirm that the strangeness enhancement factor has a peak at low AGS energies, while at and above the highest SPS energy of collisions the chemical equilibrium of strangeness is observed. We argue that the chemical equilibrium of strangeness, i.e. $gamma_s simeq 1$, observed above the center of mass collision energy 4.3 GeV may be related to the hadronization of quark gluon bags which have the Hagedorn mass spectrum, and, hence, it may be a new signal for the onset of deconfinement.



rate research

Read More

The Hadron-Resonance Gas (HRG) approach - used to model hadronic matter at small baryon potentials $mu_B$ and finite temperature $T$ - is extended to finite and large chemical potentials by introducing interactions between baryons in line with relativistic mean-field theory defining an interacting HRG (IHRG). Using lattice data for $mu_B=0$ as well as information on the nuclear equation of state at $T=0$ we constrain the attractive and repulsive interactions of the IHRG such that it reproduces the lattice equation of state at $mu_B=0$ and the nuclear equation of state at $T=0$ and finite $mu_B$. The formulated covariant approach is thermodynamically consistent and allows us to provide further information on the phase boundary between hadronic and partonic phases of strongly interacting matter by assuming constant thermodynamic potentials.
Here we develop an original approach to investigate the grand canonical partition function of the multicomponent mixtures of Boltzmann particles with hard-core interaction in finite and even small systems of the volumes above 20 fm$^3$. The derived expressions of the induced surface tension equation of state are analyzed in details. It is shown that the metastable states, which can emerge in the finite systems with realistic interaction, appear at very high pressures at which the hadron resonance gas, most probably, is not applicable at all. It is shown how and under what conditions the obtained results for finite systems can be generalized to include into a formalism the equation for curvature tension. The applicability range of the obtained equations of induced surface and curvature tensions for finite systems is discussed and their close relations to the equations of the morphological thermodynamics are established. The hadron resonance gas model on the basis of the obtained advanced equation of state is worked out. Also, this model is applied to analyze the chemical freeze-out of hadrons and light nuclei with the number of (anti-)baryons not exceeding 4, including the most problematic ratios of hyper-triton and its antiparticle. Their multiplicities were measured by the ALICE Collaboration in the central lead-lead collisions at the center-of-mass energy $sqrt{s_{rm NN}} =$ 2.76 TeV.
In this work we discuss a modified version of Excluded Volume Hadron Resonance Gas model and also study the effect of Lorentz contraction of the excluded volume on scaled pressure and susceptibilities of conserved charges. We find that the Lorentz contraction, coupled with the variety of excluded volume parameters reproduce the lattice QCD data quite satisfactorily.
We study the effect of temperature (T) and baryon density ({mu}) dependent hadron masses on the thermodynamics of hadronic matter. We use linear scaling rule in terms of constituent quark masses for all hadrons except for light mesons. T and {mu} dependent constituent quark masses and the light mesons masses are computed using 2+1 flavor Nambu-Jona-Lasinio (NJL) model. We compute the thermodynamical quantities of hadronic matter within excluded volume hadron resonance gas model (EHRG) with these T and {mu} dependent hadron masses. We confront the thermodynamical quantities with the lattice quantum chromodynamics (LQCD) at {mu} = 0 GeV. Further, we comment on the effect of T and {mu} dependent hadron masses on the transport properties near the transition temperature.
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا