Do you want to publish a course? Click here

Semiconductor devices for entangled photon pair generation: a review

83   0   0.0 ( 0 )
 Added by Adeline Orieux
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows to instantaneously know the properties of the other, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today to a bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing to generate entanglement and the tools to characterize it; we will give an overview of major recent results of the last years and highlight perspectives for future developments.



rate research

Read More

157 - K. Laiho , B. Pressl , A. Schlager 2016
We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain and provide an important feedback for designing such sources, especially in the broadband case.
77 - A. Gilchrist , K. J. Resch , 2006
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.
More than 80 years passed since the first publication on entangled quantum states. In this period of time the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon-pairs. Although, it was originally believed that quantum dots must exhibit a limited degree of entanglement related to numerous decoherence effects present in the solid-state. Recent studies invalidated the premise of unavoidable entanglement degrading effects. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.
Semiconductor quantum dots are promising constituents for future quantum communication. Although deterministic, fast, efficient, coherent, and pure emission of entangled photons has been realized, implementing a practical quantum network remains outstanding. Here we explore the limits for sources of polarization-entangled photons from the commonly used biexciton-exciton cascade. We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks. The consequences of device fabrication, dynamic tuning techniques and statistical effects for practical network applications are investigated. We identify the critical device parameters and present a numerical model for benchmarking the device scalability in order to bring the realization of distributed semiconductor-based quantum networks one step closer to reality.
Noise and imperfection of realistic devices are major obstacles for implementing quantum cryptography. In particular birefringence in optical fibers leads to decoherence of qubits encoded in polarization of photon. We show how to overcome this problem by doing single qubit quantum communication without a shared spatial reference frame and precise timing. Quantum information will be encoded in pair of photons using ``tag operations which corresponds to the time delay of one of the polarization modes. This method is robust against the phase instability of the interferometers despite the use of time-bins. Moreover synchronized clocks are not required in the ideal situation no photon loss case as they are only necessary to label the different encoded qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا