No Arabic abstract
In this paper, we tackle the accurate and consistent Structure from Motion (SfM) problem, in particular camera registration, far exceeding the memory of a single computer in parallel. Different from the previous methods which drastically simplify the parameters of SfM and sacrifice the accuracy of the final reconstruction, we try to preserve the connectivities among cameras by proposing a camera clustering algorithm to divide a large SfM problem into smaller sub-problems in terms of camera clusters with overlapping. We then exploit a hybrid formulation that applies the relative poses from local incremental SfM into a global motion averaging framework and produce accurate and consistent global camera poses. Our scalable formulation in terms of camera clusters is highly applicable to the whole SfM pipeline including track generation, local SfM, 3D point triangulation and bundle adjustment. We are even able to reconstruct the camera poses of a city-scale data-set containing more than one million high-resolution images with superior accuracy and robustness evaluated on benchmark, Internet, and sequential data-sets.
This work addresses the outlier removal problem in large-scale global structure-from-motion. In such applications, global outlier removal is very useful to mitigate the deterioration caused by mismatches in the feature point matching step. Unlike existing outlier removal methods, we exploit the structure in multiview geometry problems to propose a dimension reduced formulation, based on which two methods have been developed. The first method considers a convex relaxed $ell_1$ minimization and is solved by a single linear programming (LP), whilst the second one approximately solves the ideal $ell_0$ minimization by an iteratively reweighted method. The dimension reduction results in a significant speedup of the new algorithms. Further, the iteratively reweighted method can significantly reduce the possibility of removing true inliers. Realistic multiview reconstruction experiments demonstrated that, compared with state-of-the-art algorithms, the new algorithms are much more efficient and meanwhile can give improved solution. Matlab code for reproducing the results is available at textit{https://github.com/FWen/OUTLR.git}.
In this work, we present a new learning-based pipeline for the generation of 3D shapes. We build our method on top of recent advances on the so called shape-from-spectrum paradigm, which aims at recovering the full 3D geometric structure of an object only from the eigenvalues of its Laplacian operator. In designing our learning strategy, we consider the spectrum as a natural and ready to use representation to encode variability of the shapes. Therefore, we propose a simple decoder-only architecture that directly maps spectra to 3D embeddings; in particular, we combine information from global and local spectra, the latter being obtained from localized variants of the manifold Laplacian. This combination captures the relations between the full shape and its local parts, leading to more accurate generation of geometric details and an improved semantic control in shape synthesis and novel editing applications. Our results confirm the improvement of the proposed approach in comparison to existing and alternative methods.
Distributed averaging is one of the simplest and most studied network dynamics. Its applications range from cooperative inference in sensor networks, to robot formation, to opinion dynamics. A number of fundamental results and examples scattered through the literature are gathered here and originally presented, emphasizing the deep interplay between the network interconnection structure and the emergent global behavior.
Current non-rigid structure from motion (NRSfM) algorithms are mainly limited with respect to: (i) the number of images, and (ii) the type of shape variability they can handle. This has hampered the practical utility of NRSfM for many applications within vision. In this paper we propose a novel deep neural network to recover camera poses and 3D points solely from an ensemble of 2D image coordinates. The proposed neural network is mathematically interpretable as a multi-layer block sparse dictionary learning problem, and can handle problems of unprecedented scale and shape complexity. Extensive experiments demonstrate the impressive performance of our approach where we exhibit superior precision and robustness against all available state-of-the-art works in the order of magnitude. We further propose a quality measure (based on the network weights) which circumvents the need for 3D ground-truth to ascertain the confidence we have in the reconstruction.
Existing deep methods produce highly accurate 3D reconstructions in stereo and multiview stereo settings, i.e., when cameras are both internally and externally calibrated. Nevertheless, the challenge of simultaneous recovery of camera poses and 3D scene structure in multiview settings with deep networks is still outstanding. Inspired by projective factorization for Structure from Motion (SFM) and by deep matrix completion techniques, we propose a neural network architecture that, given a set of point tracks in multiple images of a static scene, recovers both the camera parameters and a (sparse) scene structure by minimizing an unsupervised reprojection loss. Our network architecture is designed to respect the structure of the problem: the sought output is equivariant to permutations of both cameras and scene points. Notably, our method does not require initialization of camera parameters or 3D point locations. We test our architecture in two setups: (1) single scene reconstruction and (2) learning from multiple scenes. Our experiments, conducted on a variety of datasets in both internally calibrated and uncalibrated settings, indicate that our method accurately recovers pose and structure, on par with classical state of the art methods. Additionally, we show that a pre-trained network can be used to reconstruct novel scenes using inexpensive fine-tuning with no loss of accuracy.