Do you want to publish a course? Click here

Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: periodic boundary conditions

174   0   0.0 ( 0 )
 Added by Sergey Zelik V.
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

This is the second part of our study of the Inertial Manifolds for 1D systems of reaction-diffusion-advection equations initiated in cite{KZI} and it is devoted to the case of periodic boundary conditions. It is shown that, in contrast to the case of Dirichlet or Neumann boundary conditions, considered in the first part, Inertial Manifolds may not exist in the case of systems endowed by periodic boundary conditions. However, as also shown, inertial manifolds still exist in the case of scalar reaction-diffusion-advection equations. Thus, the existence or non-existence of inertial manifolds for this class of dissipative systems strongly depend on the choice of boundary conditions.



rate research

Read More

This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spectral gap property, it is shown that this property is satisfied after the proper non-local change of the dependent variable. The case of periodic boundary conditions where the situation is principally different and the inertial manifold may not exist is considered in the second part of our study.
The existence of an inertial manifold for the 3D Cahn-Hilliard equation with periodic boundary conditions is verified using the proper extension of the so-called spatial averaging principle introduced by G. Sell and J. Mallet-Paret. Moreover, the extra regularity of this manifold is also obtained.
We prove the existence of an Inertial Manifold for 3D complex Ginzburg-Landau equation with periodic boundary conditions as well as for more general cross-diffusion system assuming that the dispersive exponent is not vanishing. The result is obtained under the assumption that the parameters of the equation is chosen in such a way that the finite-time blow up of smooth solutions does not take place. For the proof of this result we utilize the recently suggested method of spatio-temporal averaging.
88 - Anna Kostianko 2015
The existence of an inertial manifold for the modified Leray-$alpha$ model with periodic boundary conditions in three-dimensional space is proved by using the so-called spatial averaging principle. Moreover, an adaptation of the Perron method for constructing inertial manifolds in the particular case of zero spatial averaging is suggested.
This paper derives physically meaningful boundary conditions for fractional diffusion equations, using a mass balance approach. Numerical solutions are presented, and theoretical properties are reviewed, including well-posedness and steady state solutions. Absorbing and reflecting boundary conditions are considered, and illustrated through several examples. Reflecting boundary conditions involve fractional derivatives. The Caputo fractional derivative is shown to be unsuitable for modeling fractional diffusion, since the resulting boundary value problem is not positivity preserving.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا