No Arabic abstract
Building upon work by Matsumoto, we show that the quantum relative entropy with full-rank second argument is determined by four simple axioms: i) Continuity in the first argument, ii) the validity of the data-processing inequality, iii) additivity under tensor products, and iv) super-additivity. This observation has immediate implications for quantum thermodynamics, which we discuss. Specifically, we demonstrate that, under reasonable restrictions, the free energy is singled out as a measure of athermality. In particular, we consider an extended class of Gibbs-preserving maps as free operations in a resource-theoretic framework, in which a catalyst is allowed to build up correlations with the system at hand. The free energy is the only extensive and continuous function that is monotonic under such free operations.
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing condition in the Gibbs measure associated to their dynamics, via a quasi-factorization of the entropy in terms of the conditional entropy in some sub-$sigma$-algebras. In this work we analyze analogous quasi-factorization results in the quantum case. For that, we define the quantum conditional relative entropy and prove several quasi-factorization results for it. As an illustration of their potential, we use one of them to obtain a positive log-Sobolev constant for the heat-bath dynamics with product fixed point.
The basic thermodynamic quantities for a non-interacting scalar field in a periodic potential composed of either a one-dimensional chain of Dirac $delta$-$delta^prime$ functions or a specific potential with extended compact support are calculated. First, we consider the representation in terms of real frequencies (or one-particle energies). Then we turn the axis of frequency integration towards the imaginary axis by a finite angle, which allows for easy numerical evaluation, and finally turn completely to the imaginary frequencies and derive the corresponding Matsubara representation, which this way appears also for systems with band structure. In the limit case $T to 0$ we confirm earlier results on the vacuum energy. We calculate for the mentioned examples the free energy and the entropy and generalize earlier results on negative entropy.
The relative entropy of entanglement $E_R$ is defined as the distance of a multi-partite quantum state from the set of separable states as measured by the quantum relative entropy. We show that this optimisation is always achieved, i.e. any state admits a (unique) closest separable state, even in infinite dimension; also, $E_R$ is everywhere lower semi-continuous. These results, which seem to have gone unnoticed so far, hold not only for the relative entropy of entanglement and its multi-partite generalisations, but also for many other similar resource quantifiers, such as the relative entropy of non-Gaussianity, of non-classicality, of Wigner negativity -- more generally, all relative entropy distances from the sets of states with non-negative $lambda$-quasi-probability distribution. The crucial hypothesis underpinning all these applications is the weak*-closedness of the cone generated by free states. We complement our findings by giving explicit and asymptotically tight continuity estimates for $E_R$ and closely related quantities in the presence of an energy constraint.
The second law of thermodynamics is discussed and reformulated from a quantum information theoretic perspective for open quantum systems using relative entropy. Specifically, the relative entropy of a quantum state with respect to equilibrium states is considered and its monotonicity property with respect to an open quantum system evolution is used to obtain second law-like inequalities. We discuss this first for generic quantum systems in contact with a thermal bath and subsequently turn to a formulation suitable for the description of local dynamics in a relativistic quantum field theory. A local version of the second law similar to the one used in relativistic fluid dynamics can be formulated with relative entropy or even relative entanglement entropy in a space-time region bounded by two light cones. We also give an outlook towards isolated quantum field theories and discuss the role of entanglement for relativistic fluid dynamics.
We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems. This quantum correlation entropy $S^{rm QC}$ is additive over independent systems, is invariant under local unitary operations, measures total nonclassical correlations (vanishing on states with strictly classical correlation), and reduces to the entanglement entropy for bipartite pure states. It quantifies how well a quantum system can be understood via local measurements, and ties directly to non-equilibrium thermodynamics, including representing a lower bound on the quantum part of thermodynamic entropy production. We discuss two other measures of nonclassical correlation to which this entropy is equivalent, and argue that together they provide a unique thermodynamically distinguished measure.