Do you want to publish a course? Click here

Van der Waals-like Behaviour of Charged Black Holes and Hysteresis in the Dual QFTs

92   0   0.0 ( 0 )
 Added by Edgardo Franzin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the rules of the AdS/CFT correspondence, we compute the spherical analogue of the shear viscosity, defined in terms of the retarded Green function for the stress-energy tensor for QFTs dual to five-dimensional charged black holes of general relativity with a negative cosmological constant. We show that the ratio between this quantity and the entropy density, $tildeeta/s$, exhibits a temperature-dependent hysteresis. We argue that this hysteretic behaviour can be explained by the Van der Waals-like character of charged black holes, considered as thermodynamical systems. Under the critical charge, hysteresis emerges owing to the presence of two stable states (small and large black holes) connected by a meta-stable region (intermediate black holes). A potential barrier prevents the equilibrium path between the two stable states; the system evolution must occur through the meta-stable region, and a path-dependence of $tildeeta/s$ is generated.



rate research

Read More

We define and compute the (analogue) shear viscosity to entropy density ratio $tildeeta/s$ for the QFTs dual to spherical AdS black holes both in Einstein and Gauss-Bonnet gravity in five spacetime dimensions. Although in this case, owing to the lack of translational symmetry of the background, $tildeeta$ does not have the usual hydrodynamic meaning, it can be still interpreted as the rate of entropy production due to a strain. At large and small temperatures, it is found that $tildeeta/s$ is a monotonic increasing function of the temperature. In particular, at large temperatures it approaches a constant value, whereas, at small temperatures, when the black hole has a regular, stable extremal limit, $tildeeta/s$ goes to zero with scaling law behaviour. Whenever the phase diagram of the black hole has a Van der Waals-like behaviour, i.e. it is characterised by the presence of two stable states (small and large black holes) connected by a meta-stable region (intermediate black holes), the system evolution must occur through the meta-stable region and temperature-dependent hysteresis of $tildeeta/s$ is generated by non-equilibrium thermodynamics.
The phase structure and critical phenomena of the 3+1 dimensional charged black holes in asymptotically flat spacetime are investigated in terms of thermodynamic properties within the Renyi statistics. With this approach as the non-extensive parameter above zero, we find that the charged black hole can be in thermodynamic equilibrium with surrounding thermal radiation, and have a Hawking-Page phase transition in the same way in the case of AdS charged black hole. This gives more evidence supporting the proposal that there exists an equivalence between the black hole thermodynamics in asymptotically flat spacetime via Renyi statistics and that in asymptotically AdS spacetime via Gibbs-Boltzmann statistics, proposed by Czinner et al. However, the present work also provides another aspect of supporting evidence through exploring the extended phase space within the Renyi statistics. Working on a modified version of Smarr formula, the thermodynamic pressure $P$ and volume $v$ of a charged black hole are found to be related to the non-extensive parameter. The resulting $P-v$ diagram indicates that the thermodynamics of charged black holes in asymptotically flat spacetime via Renyi statistics has the Van der Waals phase structure, equivalent to that in asymptotically AdS spacetime via Gibbs-Boltzmann statistics.
157 - M.H. Dehghani , R. Pourhasan , 2011
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical potential. We also consider the effect of Maxwell charge on the effective potential between objects in the dual theory.
We investigate the effects of a modified dispersion relation proposed by Majhi and Vagenas on the Reissner-Nordstrom black hole thermodynamics in a universe with large extra dimensions. It is shown that entropy, temperature and heat capacity receive new corrections and charged black holes in this framework have less degrees of freedom and decay faster compared to black holes in the Hawking picture. We also study the emission rate of black hole and compare our results with other quantum gravity approaches. In this regard, the existence of the logarithmic prefactor and the relation between dimensions and charge are discussed. This procedure is not only valid for a single horizon spacetime but it is also valid for the spacetimes with inner and outer horizons.
78 - Zhen-Ming Xu , Bin Wu , 2021
By introducing the general construction of Landau free energy of the van der Waals system and charged AdS black hole system, we have preliminarily realized the Landau continuous phase transition theory in black hole thermodynamics. The results show that the Landau free energy constructed in present paper can directly reflect the physical process of black hole phase transition. Specifically, the splitting of the global minimum of the Landau free energy corresponds to the second-order phase transition of the black hole, and the transformation of the global minimum reflects the first-order phase transition of the black hole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا