No Arabic abstract
There are many proposed mechanisms driving the morphological transformation of disk galaxies to elliptical galaxies. In this paper, we determine if the observed transformation in low mass groups can be explained by the merger histories of galaxies. We measured the group mass-morphology relation for groups from the Galaxy and Mass Assembly group catalogue with masses from 10$^{11}$ - 10$^{15}$ M$_{odot}$. Contrary to previous studies, the fraction of elliptical galaxies in our more complete group sample increases significantly with group mass across the full range of group mass. The elliptical fraction increases at a rate of 0.163$pm$0.012 per dex of group mass for groups more massive than 10$^{12.5}$ M$_{odot}$. If we allow for uncertainties in the observed group masses, our results are consistent with a continuous increase in elliptical fraction from group masses as low as 10$^{11}$M$_{odot}$. We tested if this observed relation is consistent with merger activity using a GADGET-2 dark matter simulation of the galaxy groups. We specified that a simulated galaxy would be transformed to an elliptical morphology either if it experienced a major merger or if its cumulative mass gained from minor mergers exceeded 30 per cent of its final mass. We then calculated a group mass-morphology relation for the simulations. The position and slope of the simulated relation were consistent with the observational relation, with a gradient of 0.184$pm$0.010 per dex of group mass. These results demonstrate a strong correlation between the frequency of merger events and disk-to-elliptical galaxy transformation in galaxy group environments.
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly (GAMA) groups at $0.05leq z leq 0.2$ and analyze the projected phase space (PPS) diagram, i.e. the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime $10^{12}leq (M_{200}/M_{odot})< 10^{14}$. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies towards the group center by a factor $sim 1.2$ with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.
We study the radio emission of the most massive galaxies in a sample of dynamically relaxed and un-relaxed galaxy groups from Galaxy and Mass Assembly (GAMA). The dynamical state of the group is defined by the stellar dominance of the brightest group galaxy, e.g. the luminosity gap between the two most luminous members, and the offset between the position of the brightest group galaxy and the luminosity centroid of the group. We find that the radio luminosity of the most massive galaxy in the group strongly depends on its environment, such that the brightest group galaxies in dynamically young (evolving) groups are an order of magnitude more luminous in the radio than those with a similar stellar mass but residing in dynamically old (relaxed) groups. This observation has been successfully reproduced by a newly developed semi-analytic model which allows us to explore the various causes of these findings. We find that the fraction of radio loud brightest group galaxies in the observed dynamically young groups is ~2 times that in the dynamically old groups. We discuss the implications of this observational constraint on the central galaxy properties in the context of galaxy mergers and the super-massive blackhole accretion rate.
Using a volume-limited sample of 550 groups from the Galaxy And Mass Assembly (GAMA) Galaxy Group Catalogue spanning the halo mass range $12.8 < log [M_{h}/M] < 14.2$, we investigate the merging potential of central Brightest Group Galaxies (BGGs). We use spectroscopically-confirmed close-companion galaxies as an indication of the potential stellar mass build-up of low-redshift BGGs, $z leq 0.2$. We identify 17 close-companion galaxies with projected separations $r_{p} < 30$ kpc, relative velocities $Delta v leq 300$ km s$^{-1}$, and stellar-mass ratios $M_{BGG}/M_{CC} leq 4$ relative to the BGG. These close-companion galaxies yield a total pair fraction of $0.03 pm 0.01$. Overall, we find that BGGs in our sample have the potential to grow in stellar mass due to mergers by $2.2 pm 1.5%$ Gyr$^{-1}$. This is lower than the stellar mass growth predicted by current galaxy evolution models.
Using the complete GAMA-I survey covering ~142 sq. deg. to r=19.4, of which ~47 sq. deg. is to r=19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Lambda-CDM N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14,388 galaxy groups (with multiplicity >= 2$), including 44,186 galaxies out of a possible 110,192 galaxies, implying ~40% of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with 5 or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin.
Abridged - We quantify the effect of the galaxy group environment (for 12.5 < log(M_group/Msun) < 14.0) on the star formation rates of the (morphologically-selected) population of disk-dominated local Universe spiral galaxies (z < 0.13) with stellar masses log(M*/Msun) > 9.5. Within this population, we find that, while a small minority of group satellites are strongly quenched, the group centrals, and the large majority of satellites exhibit levels of SFR indistinguishable from ungrouped field galaxies of the same M*, albeit with a higher scatter, and for all M*. Modelling these results, we deduce that disk-dominated satellites continue to be characterized by a rapid cycling of gas into and out of their ISM at rates similar to those operating prior to infall, with the on-going fuelling likely sourced from the group intrahalo medium (IHM) on Mpc scales, rather than from the circum-galactic medium on 100kpc scales. Consequently, the color-density relation of the galaxy population as a whole would appear to be primarily due to a change in the mix of disk- and spheroid-dominated morphologies in the denser group environment compared to the field, rather than to a reduced propensity of the IHM in higher mass structures to cool and accrete onto galaxies. We also suggest that the inferred substantial accretion of IHM gas by satellite disk-dominated galaxies will lead to a progressive reduction in their specific angular momentum, thereby representing an efficient secular mechanism to transform morphology from star-forming disk-dominated types to more passive spheroid-dominated types.