No Arabic abstract
We propose a new approach to initialize the hydrodynamic fields such as energy density distributions and four flow velocity fields in hydrodynamic modeling of high-energy nuclear collisions at the collider energies. Instead of matching the energy-momentum tensor or putting the initial conditions of quark-gluon fluids at a fixed initial time, we utilize a framework of relativistic hydrodynamic equations with source terms to describe the initial stage. Putting the energy and momentum loss rate of the initial partons into the source terms, we obtain hydrodynamic initial conditions dynamically. The resultant initial profile of the quark-gluon fluid looks highly bumpy as seen in the conventional event-by-event initial conditions. In addition, initial random flow velocity fields also are generated as a consequence of momentum deposition from the initial partons. We regard the partons that survive after the dynamical initialization process as the mini-jets and find sizable effects of both mini-jet propagation in the quark-gluon fluids and initial random transverse flow on the final momentum spectra and anisotropic flow observables. We perform event-by-event $(3+1)$-dimensional ideal hydrodynamic simulations with this new framework that enables us to describe the hydrodynamic bulk collectivity, parton energy loss, and interplay among them in a unified manner.
A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both elastic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of the $D$ meson suppression and elliptic flow observed at the LHC and RHIC. The prediction for the Pb-Pb collisions at $sqrt{s_mathrm{NN}}$=5.02~TeV is provided.
One of the primary goals of nuclear physics is studying the phase diagram of Quantum Chromodynamics, where a hypothetical critical point serves as a landmark. A systematic model-data comparison of heavy-ion collisions at center-of-mass energies between 1 and 100 GeV per nucleon is essential for locating the critical point and the phase boundary between the deconfined quark-gluon plasma and the confined hadron resonance gas. At these energies the net baryon density of the system can be high and critical fluctuations can become essential in the presence of the critical point. Simulating their dynamical evolution thus becomes an indispensable part of theoretical modeling. In this thesis we first present the (3+1)-dimensional relativistic hydrodynamic code BEShydro, which solves the equations of motion of second-order Denicol-Niemi-Molnar-Rischke theory, including bulk and shear viscous components as well as baryon diffusion current. We then study the effects caused by the baryon diffusion on the longitudinal dynamics and on the phase diagram trajectories of fluid cells at different space-time rapidities of the system, and how they are affected by critical dynamics near the critical point. We finally explore the evolution of non-hydrodynamic slow processes describing long wavelength critical fluctuations near the critical point, by extending the conventional hydrodynamic description by coupling it to additional explicitly evolving slow modes, and their back-reaction to the bulk matter properties.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics associated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
We build a new phenomenological framework that bridges the long wavelength bulk viscous transport properties of the strongly-coupled quark-gluon plasma (sQGP) and short distance hard jet transport properties in the QGP. The full nonperturbative chromo-electric (E) and chromo-magnetic (M) structure of the near perfect fluid like sQGP in the critical transition region are integrated into a semi-Quark-Gluon-Monopole Plasma (sQGMP) model lattice-compatibly and implemented into the new CUJET3.0 jet quenching framework. All observables computed from CUJET3.0 are found to be consistent with available data at RHIC and LHC simultaneously. A quantitative connection between the shear viscosity and jet transport parameter is rigorously established within this framework. We deduce the $T=160-600$ MeV dependence of the QGPs $eta/s$: its near vanishing value in the near $T_c$ regime is determined by the composition of E and M charges, it increases as $T$ rises, and its high $T$ limit is fixed by color screening scales.
Photons radiated in heavy-ion collisions are a penetrating probe, and as such can play an important role in the determination of the quark-gluon plasma (QGP) transport coefficients. In this work we calculate the bulk viscous correction to photon production in two-to-two scattering reactions. Phase-space integrals describing the bulk viscous correction are evaluated explicitly in order to avoid the forward scattering approximation which is shown to be poor for photons at lower energies. We furthermore present hydrodynamical simulations of AA collisions focusing on the effect of this calculation on photonic observables. Bulk corrections are shown to reduce the elliptic flow of photons at higher $p_T$.