Interacting atomic quantum fluids on momentum-space lattices


Abstract in English

We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven atomic transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low energy atomic collisions, which are short ranged in real space, relate to nearly infinite-ranged interactions in momentum space. However, the distinguishability of the discrete momentum states coupled in MSLs gives rise to an added exchange energy between condensate atoms in different momentum orders, relating to an effectively attractive, finite-ranged interaction in momentum space. We explore the types of phenomena that can result from this interaction, including the formation of chiral self-bound states in topological MSLs. We also discuss the prospects for creating squeezed states in momentum-space double wells.

Download