Do you want to publish a course? Click here

A Hubble Space Telescope survey for novae in M87. III. Are novae good standard candles 15 days after maximum brightness?

83   0   0.0 ( 0 )
 Added by Michael Shara
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called Maximum-Magnitude Rate of Decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here we demonstrate that a modified Buscombe - de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 days converge to nearly the same absolute magnitude about two weeks after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily-sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times $t2 > 10 days we find that M87 novae display M(606W,15) = -6.37 +/- 0.46 and M(814W,15) = -6.11 +/- 0.43. If very fast novae with decline times t2 < 10 days are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1 sigma accuracies of +/-20% with the above calibrations.



rate research

Read More

The giant elliptical galaxy M87 has been imaged over 30 consecutive days in 2001, 60 consecutive days in 2005-2006, and every 5 days over a 265 day span in 2016-2017 with the Hubble Space Telescope, leading to the detection of 137 classical novae throughout M87. We have identified 2134 globular clusters (GC) in M87 in these images, and carried out searches of the clusters for classical novae erupting in or near them. One GC CN was detected in the 2001 data, while zero novae were found during the 2005-2006 observations. Four candidate GC novae were (barely) detected in visible light during the 2016-2017 observations, but none of the four were seen in near-ultraviolet light, leading us to reject them. Combining these results with our detection of one M87 GC nova out of a total of 137 detected CN, we conclude that such novae may be overabundant relative to the field, but small number statistics dominate this (and all other) searches. A definitive determination of GC CN overabundance (or not) will require much larger samples which LSST should provide in the coming decade.
The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae and nine fainter, likely very slow and/or symbiotic novae. In this first in a series of papers we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest classical novae we derive a nova rate for M87: $363_{-45}^{+33}$ novae/yr. We also derive the luminosity-specific classical nova rate for this galaxy, which is $7.88_{-2.6}^{+2.3} /yr/ 10^{10}L_odot,_{K}$. Both rates are 3-4 times higher higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. We suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies.
Novae are the observable outcome of a transient thermonuclear runaway on the surface of an accreting white dwarf in a close binary system. Their high peak luminosity renders them visible in galaxies out beyond the distance of the Virgo Cluster. Over the past century, surveys of extragalactic novae, particularly within the nearby Andromeda Galaxy, have yielded substantial insights regarding the properties of their populations and sub-populations. The recent decade has seen the first detailed panchromatic studies of individual extragalactic novae and the discovery of two probably related sub-groups: the faint-fast and the rapid recurrent novae. In this review we summarise the past 100 years of extragalactic efforts, introduce the rapid recurrent sub-group, and look in detail at the remarkable faint-fast, and rapid recurrent, nova M31N 2008-12a. We end with a brief look forward, not to the next 100 years, but the next few decades, and the study of novae in the upcoming era of wide-field and multi-messenger time-domain surveys.
A search for novae in M49 (NGC 4472) has been undertaken with the Hubble Space Telescope. A 55-day observing campaign in F555W (19 epochs) and F814W (five epochs) has led to the discovery of nine novae. We find that M49 may be under-abundant in slow, faint novae relative to the Milky Way and M31. Instead, the decline rates of the M49 novae are remarkably similar to those of novae in the LMC. This fact argues against a simple classification of novae in bulge and disk sub-classes. We examine the Maximum-Magnitude versus Rate of Decline (MMRD) relation for novae in M49, finding only marginal agreement with the Galactic and M31 MMRD relations. A recalibration of the Buscombe-de Vaucouleurs relation gives an absolute magnitude 15 days past maximum of M_{V,15} = -6.36+/-0.19, which is substantially brighter than previous calibrations based on Galactic novae. Monte Carlo simulations yield a global nova rate for M49 of 100{+35}{-30} per year, and a luminosity-specific nova rate in the range u_K = 1.7-2.5 per year per 10^{-10} L_K,solar. These rates are far lower than those predicted by current models of nova production in elliptical galaxies and may point to a relative scarity of novae progenitors, or an increased recurrence timescale, in early-type environments.
We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae (LRNe). They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC4490-2011OT1, M101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, Halpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (~6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. Halpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for LRNe. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between LRNe and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا