Do you want to publish a course? Click here

Organic Nanodiamonds

105   0   0.0 ( 0 )
 Added by Todd Zapata
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nano-crystalline diamond is a new carbon phase with numerous intriguing physical and chemical properties and applications. Small doped nanodiamonds for example do find increased use as novel quantum markers in biomedical applications. However, growing doped nanodiamonds below sizes of 5 nm with controlled composition has been elusive so far. Here we grow nanodiamonds under conditions where diamond-like organic seed molecules do not decompose. This is a key first step toward engineered growth of fluorescent nanodiamonds wherein a custom designed seed molecule can be incorporated at the center of a nanodiamond. By substituting atoms at particular locations in the seed molecule it will be possible to achieve complex multi-atom diamond color centers or even to engineer complete nitrogen-vacancy (NV) quantum registers. Other benefits include the potential to grow ultrasmall nanodiamonds, wherein each diamond no matter how small can have at least one bright and photostable fluorescent emitter.



rate research

Read More

The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.
The ultrafast hole dynamics triggered by the photoexcitation of molecular targets is a highly correlated process even for those systems, like organic molecules, having a weakly correlated ground state. We here provide a unifying framework and a numerically efficient matrix formulation of state-of-the-art non-equilibrium Greens function (NEGF) methods like second-Born as well as $GW$ and $T$-matrix without and {em with} exchange diagrams. Numerical simulations are presented for a paradigmatic, exactly solvable molecular system and the shortcomings of the established NEGF methods are highlighted. We then develop a NEGF scheme based on the Faddeev treatment of three-particle correlations; the exceptional improvement over established methods is explained and demonstrated. The Faddeev NEGF scheme scales linearly with the maximum propagation time, thereby opening prospects for femtosecond simulations of large molecules.
The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.
We demonstrate cooling of ultrathin fiber tapers coupled with nitrogen vacancy (NV) centers in nanodiamonds to cryogenic temperatures. Nanodiamonds containing multiple NV centers are deposited on the subwavelength 480-nm-diameter nanofiber region of fiber tapers. The fiber tapers are successfully cooled to 9 K using our home-built mounting holder and an optimized cooling speed. The fluorescence from the nanodiamond NV centers is efficiently channeled into a single guided mode and shows characteristic sharp zero-phonon lines of both neutral and negatively charged NV centers. The present nanofiber/nanodiamond hybrid systems at cryogenic temperatures can be used as NV-based quantum information devices and for highly sensitive nanoscale magnetometry in a cryogenic environment.
Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend on the quality of the surrounding host lattice. This defect is therefore a good probe to investigate the material properties of small NDs. Here we report unprecedented narrow optical transitions for SiV colour centers hosted in nanodiamonds produced using a novel high-pressure high-temperature (HPHT) technique. The SiV zero-phonon lines were measured to have an inhomogeneous distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual spectral lines as narrow as 354 MHz were measured for SiV centres in nanodiamonds smaller than 200 nm, which is four times narrower than the best SiV line previously reported for nanodiamonds. Correcting for apparent spectral diffusion yielded a homogeneous linewith of about 200 MHz, which is close to the width limit imposed by the radiative lifetime. These results demonstrate that the direct HPHT synthesis technique is capable of producing nanodiamonds with high crystal lattice quality, which are therefore a valuable technical material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا