Do you want to publish a course? Click here

Microplasma generation by slow microwave in an electromagnetically induced transparency-like metasurface

54   0   0.0 ( 0 )
 Added by Yasuhiro Tamayama
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microplasma generation using microwaves in an electromagnetically induced transparency (EIT)-like metasurface composed of two types of radiatively coupled cut-wire resonators with slightly different resonance frequencies is investigated. Microplasma is generated in either of the gaps of the cut-wire resonators as a result of strong enhancement of the local electric field associated with resonance and slow microwave effect. The threshold microwave power for plasma ignition is found to reach a minimum at the EIT-like transmission peak frequency, where the group index is maximized. A pump-probe measurement of the metasurface reveals that the transmission properties can be significantly varied by varying the properties of the generated microplasma near the EIT-like transmission peak frequency and the resonance frequency. The electron density of the microplasma is roughly estimated to be of order $1times 10^{10},mathrm{cm}^{-3}$ for a pump power of $15.8,mathrm{W}$ by comparing the measured transmission spectrum for the probe wave with the numerically calculated spectrum. In the calculation, we assumed that the plasma is uniformly generated in the resonator gap, that the electron temperature is $2,mathrm{eV}$, and that the elastic scattering cross section is $20 times 10^{-16},mathrm{cm}^2$.



rate research

Read More

We report electromagnetically induced transparency for the D1 and D2 lines in $^{6}$Li in both a vapour cell and an atomic beam. Electromagnetically induced transparency is created using co-propagating mutually coherent laser beams with a frequency difference equal to the hyperfine ground state splitting of 228.2 MHz. The effects of various optical polarization configurations and applied magnetic fields are investigated. In addition, we apply an optical Ramsey spectroscopy technique which further reduces the observed resonance width.
Recent years have seen vast progress in the generation and detection of structured light, with potential applications in high capacity optical data storage and continuous variable quantum technologies. Here we measure the transmission of structured light through cold rubidium atoms and observe regions of electromagnetically induced transparency (EIT). We use q-plates to generate a probe beam with azimuthally varying phase and polarisation structure, and its right and left circular polarisation components provide the probe and control of an EIT transition. We observe an azimuthal modulation of the absorption profile that is dictated by the phase and polarisation structure of the probe laser. Conventional EIT systems do not exhibit phase sensitivity. We show, however, that a weak transverse magnetic field closes the EIT transitions, thereby generating phase dependent dark states which in turn lead to phase dependent transparency, in agreement with our measurements.
We study electromagnetically induced transparency (EIT) of a weakly interacting cold Rydberg gas. We show that the onset of interactions is manifest as a depopulation of the Rydberg state and numerically model this effect by adding a density-dependent non-linear term to the optical Bloch equations. In the limit of a weak probe where the depopulation effect is negligible, we observe no evidence of interaction induced decoherence and obtain a narrow Rydberg dark resonance with a linewidth of <600 kHz, limited by the Rabi frequency of the coupling beam
We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon manifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.
The electromagnetically induced transparency (EIT) phenomenon has been investigated in a $Lambda$-system of the $^{87}$Rb D$_1$ line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates $gamma_{rel}$ are used: a Rb cell with antirelaxation coating ($Lsim$1 cm) and a Rb nanometric-thin cell (nano-cell) with thickness of the atomic vapor column $L$=795nm. For the EIT in the nano-cell, we have the usual EIT resonances characterized by a reduction in the absorption (i.e. dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (i.e. bright resonances). We suppose that such unusual behavior of the EIT resonances (i.e. the reversal of the sign from DR to BR) is caused by the influence of alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا