Do you want to publish a course? Click here

HD 106906: A Case Study for External Perturbations of a Debris Disk

75   0   0.0 ( 0 )
 Added by Erika Nesvold
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Models of debris disk morphology are often focused on the effects of a planet orbiting interior to or within the disk. Nonetheless, an exterior planetary-mass perturber can also excite eccentricities in a debris disk, via Laplace-Lagrange secular perturbations in the coplanar case or Kozai-Lidov perturbations for mutually inclined companions and disks. HD 106906 is an ideal example of such a system, as it harbors a confirmed exterior 11 M_Jup companion at a projected separation of 650 au outside a resolved, asymmetric disk. We use collisional and dynamical simulations to investigate the interactions between the disk and the companion, and to use the disks observed morphology to place constraints on the companions orbit. We conclude that the disks observed morphology is consistent with perturbations from the observed exterior companion. Generalizing this result, we suggest that exterior perturbers, as well as interior planets, should be considered when investigating the cause of observed asymmetries in a debris disk.



rate research

Read More

HD 106906 is a young, binary stellar system, located in the Lower Centaurus Crux (LCC) group. This system is unique among discovered systems in that it contains an asymmetrical debris disk, as well as an 11 M$_{Jup}$ planet companion, at a separation of $sim$735 AU. Only a handful of other systems are known to contain both a disk and directly imaged planet, where HD 106906 is the only one in which the planet has apparently been scattered. The debris disk is nearly edge on, and extends roughly to $>$500 AU, where previous studies with HST have shown the outer regions to have high asymmetry. To better understand the structure and composition of the disk, we have performed a deep polarimetric study of HD 106906s asymmetrical debris disk using newly obtained $H$-, $J$-, and $K1$-band polarimetric data from the Gemini Planet Imager (GPI). An empirical analysis of our data supports a disk that is asymmetrical in surface brightness and structure, where fitting an inclined ring model to the disk spine suggests that the disk may be highly eccentric ($egtrsim0.16$). A comparison of the disk flux with the stellar flux in each band suggests a blue color that also does not significantly vary across the disk. We discuss these results in terms of possible sources of asymmetry, where we find that dynamical interaction with the planet companion, HD 106906b, is a likely candidate.
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: $J$, $K_S$, and $L^prime$, and lies at a projected separation of 7.1 (650 AU). It is confirmed to be comoving with its $13pm2$ Myr-old F5 host using Hubble Space Telescope/Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict the companions luminosity corresponds to a mass of $11pm2 M_{Jup}$, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette $J/H/K$ spectrum as L$2.5pm1$; the triangular $H$-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric ($e>0.65$) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations $>35$ AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at $<1%$, is unusually small.
We present the first scattered light detections of the HD 106906 debris disk using Gemini/GPI in the infrared and HST/ACS in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius $sim$50 AU, and an outer extent $>$500 AU. The HST data show the outer regions are highly asymmetric, resembling the needle morphology seen for the HD 15115 debris disk. The planet candidate is oriented $sim$21$deg$ away from the position angle of the primarys debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primarys disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.
HD~106906AB is so far the only young binary system around which a planet has been imaged and a debris disk evidenced thanks to a strong IR excess. As such, it represents a unique opportunity to study the dynamics of young planetary systems. We aim at further investigating the close (tens of au scales) environment of the HD~106906AB system. We used the extreme AO fed, high contrast imager SPHERE recently installed on the VLT to observe HD~106906. Both the IRDIS imager and the Integral Field Spectrometer were used. We discovered a very inclined, ring-like disk at a distance of 65~au from the star. The disk shows a strong brightness asymmetry with respect to its semi-major axis. It shows a smooth outer edge, compatible with ejection of small grains by the stellar radiation pressure. We show furthermore that the planets projected position is significantly above the disks PA. Given the determined disk inclination, it is not excluded though that the planet could still orbit within the disk plane if at a large separation (2000--3000 au). We identified several additional point sources in the SPHERE/IRDIS field-of-view, that appear to be background objects. We compare this system with other debris disks sharing similarities, and we briefly discuss the present results in the framework of dynamical evolution.
We present $H$-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from $r$ $sim$ 0.3 to $r$ $sim$ 1 (34--114 au). The disk is oriented in a near east-west direction (PA $sim$ 75$^{o}$), is inclined by $i$ $sim$ 70--75$^{o}$ and is strongly forward-scattering ($g$ $>$ 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disks eastern side. While HD 36546 intrinsic properties are consistent with a wide age range ($t$ $sim$ 1--250 $Myr$), its kinematics and analysis of coeval stars suggest a young age (3--10 $Myr$) and a possible connection to Taurus-Aurigas star formation history. SCExAOs planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 $Myr$, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen superjovian planet at $r$ $>$ 20 au may explain the disks visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly-identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا