Do you want to publish a course? Click here

New moduli components of rank 2 bundles on projective space

187   0   0.0 ( 0 )
 Added by Marcos Jardim
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present a new family of monads whose cohomology is a stable rank two vector bundle on $mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank two vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank two vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.

rate research

Read More

We present a new family of monads whose cohomology is a stable rank two vector bundle on $PP$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. Such facts are used to prove that the moduli space of stable rank two vector bundles of zero first Chern class and second Chern class equal to 5 has exactly three irreducible components.
We describe new irreducible components of the moduli space of rank $2$ semistable torsion free sheaves on the three-dimensional projective space whose generic point corresponds to non-locally free sheaves whose singular locus is either 0-dimensional or consists of a line plus disjoint points. In particular, we prove that the moduli spaces of semistable sheaves with Chern classes $(c_1,c_2,c_3)=(-1,2n,0)$ and $(c_1,c_2,c_3)=(0,n,0)$ always contain at least one rational irreducible component. As an application, we prove that the number of such components grows as the second Chern class grows, and compute the exact number of irreducible components of the moduli spaces of rank 2 semistable torsion free sheaves with Chern classes $(c_1,c_2,c_3)=(-1,2,m)$ for all possible values for $m$; all components turn out to be rational. Furthermore, we also prove that these moduli spaces are connected, showing that some of sheaves here considered are smoothable.
We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with $c_2(E)le4$, describing all the irreducible components of their moduli space. A key ingredient for our argument is the study of the moduli space ${mathcal T}(d)$ of stable sheaves on $mathbb{P}^3$ with Hilbert polynomial $P(t)=dcdot t$, which contains, as an open subset, the moduli space of rank 0 instanton sheaves of multiplicity $d$; we describe all the irreducible components of ${mathcal T}(d)$ for $dle4$.
We study the problem of rationality of an infinite series of components, the so-called Ein components, of the Gieseker-Maruyama moduli space $M(e,n)$ of rank 2 stable vector bundles with the first Chern class $e=0$ or -1 and all possible values of the second Chern class $n$ on the projective 3-space. The generalized null correlation bundles constituting open dense subsets of these components are defined as cohomology bundles of monads whose members are direct sums of line bundles of degrees depending on nonnegative integers $a,b,c$, where $bge a$ and $c>a+b$. We show that, in the wide range when $c>2a+b-e, b>a, (e,a) e(0,0)$, the Ein components are rational, and in the remaining cases they are at least stably rational. As a consequence, the union of the spaces $M(e,n)$ over all $nge1$ contains an infinite series of rational components for both $e=0$ and $e=-1$. Explicit constructions of rationality of Ein components under the above conditions on $e,a,b,c$ and, respectively, of their stable rationality in the remaining cases, are given. In the case of rationality, we construct universal families of generalized null correlation bundles over certain open subsets of Ein components showing that these subsets are fine moduli spaces. As a by-product of our construction, for $c_1=0$ and $n$ even, they provide, perhaps the first known, examples of fine moduli spaces not satisfying the condition $n$ is odd, which is a usual sufficient condition for fineness.
The moduli space of stable vector bundles on a Riemann surface is smooth when the rank and degree are coprime, and is diffeomorphic to the space of unitary connections of central constant curvature. A classic result of Newstead and Atiyah-Bott asserts that its rational cohomology ring is generated by the universal classes, that is, by the Kunneth components of the Chern classes of the universal bundle. This paper studies the larger, non-compact moduli space of Higgs bundles, as introduced by Hitchin and Simpson, with values in the canonical bundle K. This is diffeomorphic to the space of all connections of central constant curvature, whether unitary or not. The main result of the paper is that, in the rank 2 case, the rational cohomology ring of this space is again generated by universal classes. The spaces of Higgs bundles with values in K(n) for n > 0 turn out to be essential to the story. Indeed, we show that their direct limit has the homotopy type of the classifying space of the gauge group, and hence has cohomology generated by universal classes. A companion paper treats the problem of finding relations between these generators in the rank 2 case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا