Strongly enhanced temperature dependence of the chemical potential in FeSe


Abstract in English

Employing a 10-orbital tight binding model, we present a new set of hopping parameters fitted directly to our latest high resolution angle-resolved photoemission spectroscopy (ARPES) data for the high temperature tetragonal phase of FeSe. Using these parameters we predict a large 10 meV shift of the chemical potential as a function of temperature. In order to confirm this large temperature dependence, we performed ARPES experiments on FeSe and observed a $sim$25 meV rigid shift to the chemical potential between 100 K and 300 K. This unexpectedly strong shift has important implications for theoretical models of superconductivity and of nematic order in FeSe materials.

Download