The Twist of the Draped Interstellar Magnetic Field Ahead of the Heliopause: A Magnetic Reconnection Driven Rotational Discontinuity


Abstract in English

Based on the difference between the orientation of the interstellar $B_{ISM}$ and the solar magnetic fields, there was an expectation that the magnetic field direction would rotate dramatically across the heliopause (HP). However, the Voyager 1 spacecraft measured very little rotation across the HP. Previously we showed that the $B_{ISM}$ twists as it approaches the HP and acquires a strong T component (East-West). Here we establish that reconnection in the eastern flank of the heliosphere is responsible for the twist. On the eastern flank the solar magnetic field has twisted into the positive N direction and reconnects with the Southward pointing component of the $B_{ISM}$. Reconnection drives a rotational discontinuity (RD) that twists the $B_{ISM}$ into the -T direction and propagates upstream in the interstellar medium towards the nose. The consequence is that the N component of $B_{ISM}$ is reduced in a finite width band upstream of the HP. Voyager 1 currently measures angles ($delta=sin^{-1}(B_{N}/B)$) close to solar values. We present MHD simulations to support this scenario, suppressing reconnection in the nose region while allowing it in the flanks, consistent with recent ideas about reconnection suppression from diamagnetic drifts. The jump in plasma $beta$ (the plasma to magnetic pressure) across the nose of HP is much greater than in the flanks because the heliosheath $beta$ is greater there than in the flanks. Large-scale reconnection is therefore suppressed in the nose but not at the flanks. Simulation data suggest that $B_{ISM}$ will return to its pristine value $10-15~AU$ past the HP.

Download