FIRE-2 Simulations: Physics versus Numerics in Galaxy Formation


Abstract in English

The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations. Previous FIRE simulations used an identical source code (FIRE-1) for consistency. Motivated by the development of more accurate numerics - including hydrodynamic solvers, gravitational softening, and supernova coupling algorithms - and exploration of new physics (e.g. magnetic fields), we introduce FIRE-2, an updated numerical implementation of FIRE physics for the GIZMO code. We run a suite of simulations and compare against FIRE-1: overall, FIRE-2 improvements do not qualitatively change galaxy-scale properties. We pursue an extensive study of numerics versus physics. Details of the star-formation algorithm, cooling physics, and chemistry have weak effects, provided that we include metal-line cooling and star formation occurs at higher-than-mean densities. We present new resolution criteria for high-resolution galaxy simulations. Most galaxy-scale properties are robust to numerics we test, provided: (1) Toomre masses are resolved; (2) feedback coupling ensures conservation, and (3) individual supernovae are time-resolved. Stellar masses and profiles are most robust to resolution, followed by metal abundances and morphologies, followed by properties of winds and circum-galactic media (CGM). Central (~kpc) mass concentrations in massive (L*) galaxies are sensitive to numerics (via trapping/recycling of winds in hot halos). Multiple feedback mechanisms play key roles: supernovae regulate stellar masses/winds; stellar mass-loss fuels late star formation; radiative feedback suppresses accretion onto dwarfs and instantaneous star formation in disks. We provide all initial conditions and numerical algorithms used.

Download