Do you want to publish a course? Click here

On energy-critical half-wave maps into $mathbb{S}^2$

196   0   0.0 ( 0 )
 Added by Enno Lenzmann
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the energy-critical half-wave maps equation $$partial_t mathbf{u} + mathbf{u} wedge | abla| mathbf{u} = 0$$ for $mathbf{u} : [0,T) times mathbb{R} to mathbb{S}^2$. We give a complete classification of all traveling solitary waves with finite energy. The proof is based on a geometric characterization of these solutions as minimal surfaces with (not necessarily free) boundary on $mathbb{S}^2$. In particular, we discover an explicit Lorentz boost symmetry, which is implemented by the conformal Mobius group on the target $mathbb{S}^2$ applied to half-harmonic maps from $mathbb{R}$ to $mathbb{S}^2$. Complementing our classification result, we carry out a detailed analysis of the linearized operator $L$ around half-harmonic maps $mathbf{Q}$ with arbitrary degree $m geq 1$. Here we explicitly determine the nullspace including the zero-energy resonances; in particular, we prove the nondegeneracy of $mathbf{Q}$. Moreover, we give a full description of the spectrum of $L$ by finding all its $L^2$-eigenvalues and proving their simplicity. Furthermore, we prove a coercivity estimate for $L$ and we rule out embedded eigenvalues inside the essential spectrum. Our spectral analysis is based on a reformulation in terms of certain Jacobi operators (tridiagonal infinite matrices) obtained from a conformal transformation of the spectral problem posed on $mathbb{R}$ to the unit circle $mathbb{S}$. Finally, we construct a unitary map which can be seen as a gauge transform tailored for a future stability and blowup analysis close to half-harmonic maps. Our spectral results also have potential applications to the half-harmonic map heat flow, which is the parabolic counterpart of the half-wave maps equation.



rate research

Read More

We consider wave maps on $(1+d)$-dimensional Minkowski space. For each dimension $dgeq 8$ we construct a negatively curved, $d$-dimensional target manifold that allows for the existence of a self-similar wave map which provides a stable blowup mechanism for the corresponding Cauchy problem.
513 - Enno Lenzmann 2019
We review the current state of results about the half-wave maps equation on the domain $mathbb{R}^d$ with target $mathbb{S}^2$. In particular, we focus on the energy-critical case $d=1$, where we discuss the classification of traveling solitary waves and a Lax pair structure together with its implications (e.,g.~invariance of rational solutions and infinitely many conservation laws on a scale of homogeneous Besov spaces). Furthermore, we also comment on the one-dimensional space-periodic case. Finally, we list some open problem for future research.
117 - Bin Deng , Liming Sun , 2021
We consider half-harmonic maps from $mathbb{R}$ (or $mathbb{S}$) to $mathbb{S}$. We prove that all (finite energy) half-harmonic maps are non-degenerate. In other words, they are integrable critical points of the energy functional. A full description of the kernel of the linearized operator around each half-harmonic map is given. The second part of this paper devotes to studying the quantitative stability of half-harmonic maps. When its degree is $pm 1$, we prove that the deviation of any map $boldsymbol{u}:mathbb{R}to mathbb{S}$ from Mobius transformations can be controlled uniformly by $|boldsymbol{u}|_{dot H^{1/2}(mathbb{R})}^2-deg boldsymbol{u}$. This result resembles the quantitative rigidity estimate of degree $pm 1$ harmonic maps $mathbb{R}^2to mathbb{S}^2$ which is proved recently. Furthermore, we address the quantitative stability for half-harmonic maps of higher degree. We prove that if $boldsymbol{u}$ is already near to a Blaschke product, then the deviation of $boldsymbol{u}$ to Blaschke products can be controlled by $|boldsymbol{u}|_{dot H^{1/2}(mathbb{R})}^2-deg boldsymbol{u}$. Additionally, a striking example is given to show that such quantitative estimate can not be true uniformly for all $boldsymbol{u}$ of degree 2. We conjecture similar things happen for harmonic maps ${mathbb R}^2to {mathbb S}^2$.
We consider the half-wave maps equation $$ partial_t vec{S} = vec{S} wedge | abla| vec{S}, $$ where $vec{S}= vec{S}(t,x)$ takes values on the two-dimensional unit sphere $mathbb{S}^2$ and $x in mathbb{R}$ (real line case) or $x in mathbb{T}$ (periodic case). This an energy-critical Hamiltonian evolution equation recently introduced in cite{LS,Zh}, which formally arises as an effective evolution equation in the classical and continuum limit of Haldane-Shastry quantum spin chains. We prove that the half-wave maps equation admits a Lax pair and we discuss some analytic consequences of this finding. As a variant of our arguments, we also obtain a Lax pair for the half-wave maps equation with target $mathbb{H}^2$ (hyperbolic plane).
We study the propagator of the wave equation on a closed Riemannian manifold $M$. We propose a geometric approach to the construction of the propagator as a single oscillatory integral global both in space and in time with a distinguished complex-valued phase function. This enables us to provide a global invariant definition of the full symbol of the propagator - a scalar function on the cotangent bundle - and an algorithm for the explicit calculation of its homogeneous components. The central part of the paper is devoted to the detailed analysis of the subprincipal symbol; in particular, we derive its explicit small time asymptotic expansion. We present a general geometric construction that allows one to visualise topological obstructions and describe their circumvention with the use of a complex-valued phase function. We illustrate the general framework with explicit examples in dimension two.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا