No Arabic abstract
We revisit a one-parameter family of three-dimensional gauge theories with known supergravity duals. We show that three infrared behaviors are possible. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential; for one limiting value of the parameter the theory flows to an infrared fixed point; and for another limiting value it exhibits both a mass gap and confinement. Theories close to these limiting values exhibit quasi-conformal and quasi-confining dynamics, respectively. Eleven-dimensional supergravity provides a simple, geometric explanation of these features.
In this paper, hypocoercivity methods are applied to linear kinetic equations with mass conservation and without confinement, in order to prove that the solutions have an algebraic decay rate in the long-time range, which the same as the rate of the heat equation. Two alternative approaches are developed: an analysis based on decoupled Fourier modes and a direct approach where, instead of the Poincare inequality for the Dirichlet form, Nashs inequality is employed. The first approach is also used to provide a simple proof of exponential decay to equilibrium on the flat torus. The results are obtained on a space with exponential weights and then extended to larger function spaces by a factorization method. The optimality of the rates is discussed. Algebraic rates of decay on the whole space are improved when the initial datum has moment cancellations.
We relate quark confinement, as measured by the Polyakov-loop order parameter, to color confinement, as described by the Kugo-Ojima/Gribov-Zwanziger scenario. We identify a simple criterion for quark confinement based on the IR behaviour of ghost and gluon propagators, and compute the order-parameter potential from the knowledge of Landau-gauge correlation functions with the aid of the functional RG. Our approach predicts the deconfinement transition in quenched QCD to be of first order for SU(3) and second order for SU(2) -- in agreement with general expectations. As an estimate for the critical temperature, we obtain T_c=284MeV for SU(3).
We present a class of new black hole solutions in $D$-dimensional Lovelock gravity theory. The solutions have a form of direct product $mathcal{M}^m times mathcal{H}^{n}$, where $D=m+n$, $mathcal{H}^n$ is a negative constant curvature space, and are characterized by two integration constants. When $m=3$ and 4, these solutions reduce to the exact black hole solutions recently found by Maeda and Dadhich in Gauss-Bonnet gravity theory. We study thermodynamics of these black hole solutions. Although these black holes have a nonvanishing Hawking temperature, surprisingly, the mass of these solutions always vanishes. While the entropy also vanishes when $m$ is odd, it is a constant determined by Euler characteristic of $(m-2)$-dimensional cross section of black hole horizon when $m$ is even. We argue that the constant in the entropy should be thrown away. Namely, when $m$ is even, the entropy of these black holes also should vanish. We discuss the implications of these results.
We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schroedinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with m^2>0, in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza-Klein (KK) excitations and to compute the corrections to Newtons law in the thin brane limit. In the first case we consider a solution with a mass gap in the spectrum of KK fluctuations with two bound states - the massless 4D graviton free of tachyonic instabilities and a massive KK excitation - as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the (thin) Randall-Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved as in the Lykken-Randall model and the model is completely free of naked singularities.
It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topological susceptibility are similar to those arising in lattice QCD.